Exercise 1. Suppose that \(u \) solves the boundary value problem:

\[
\begin{align*}
 u_t(x, t) - u_{xx}(x, t) &= 1, \quad 0 < x < 1, t > 0 \\
 u(x, 0) &= 0, \quad 0 \leq x \leq 1 \\
 u(0, t) = u(1, t) &= 0, \quad t > 0.
\end{align*}
\]

(a) Find a function \(v = v(x) \) which solves:

\[
\begin{align*}
 -v''(x) &= 1, \quad 0 < x < 1 \\
 v(0) = v(1) &= 0.
\end{align*}
\]

(b) Show that:

\[u(x, t) \leq v(x) \]

for all \(x \in [0, 1], t > 0 \).

c) Show that:

\[u(x, t) \geq (1 - e^{-2t})v(x) \]

for all \(x \in [0, 1], t > 0 \).

d) Deduce that, for all \(x \in [0, 1] \):

\[u(x, t) \to v(x) \]

as \(t \to \infty \).

Solution:

(a) We need to solve \(v''(x) = -1 \) with boundary conditions \(v(0) = v(1) = 0 \). The ODE implies that \(v(x) = -\frac{1}{2}x^2 + Ax + B \) for some constants \(A, B \). We get the system of linear equations:

\[
\begin{align*}
 B &= 0 \\
 -\frac{1}{2} + A + B &= 0
\end{align*}
\]

from where it follows that:

\[A = \frac{1}{2} \quad \text{and} \quad B = 0. \]

Hence:

\[v(x) = \frac{1}{2} x \cdot (1 - x). \]

(b) Let us now think of \(v \) as a function of \(v \) as a function of \((x, t)\) which doesn’t depend on \(x \). By construction, we know that:

\[
\begin{align*}
 v_t(x, t) - v_{xx}(x, t) &= 1, \quad 0 < x < 1, t > 0 \\
 v(x, 0) &\geq 0, \quad 0 \leq x \leq 1 \\
 v(0, t) = v(1, t) &= 0, \quad t > 0.
\end{align*}
\]

Here, we used the fact that \(\frac{1}{2} x \cdot (1 - x) \geq 0 \) for \(0 \leq x \leq 1 \). By using the Comparison principle for the heat equation (Exercise 3 on Homework Assignment 4), it follows that:

\[u(x, t) \leq v(x, t) = v(x) \]
for all $x \in [0, 1], t > 0$.

c) Let us define:

$$w(x, t) := (1 - e^{-2t})v(x) = \frac{1}{2} (1 - e^{-2t}) \cdot x(1 - x)$$

We compute:

$$w_t(x, t) = e^{-2t} \cdot x(1 - x)$$

$$w_{xx}(x, t) = -(1 - e^{-2t}) = -1 + e^{-2t}.$$

Hence:

$$w_t(x, t) - w_{xx}(x, t) = 1 - e^{-2t} \left(1 - x(1 - x)\right).$$

We know that for $x \in [0, 1]$, one has: $x(1 - x) \in [0, 1]$. Hence, it follows that:

$$w_t(x, t) - w_{xx}(x, t) \leq 1$$

for all $0 \leq x \leq 1$, $t > 0$. In particular, we deduce that:

$$\begin{cases}
 w_t(x, t) - w_{xx}(x, t) = 1, & \text{for } 0 < x < 1, t > 0 \\
 w(x, 0) = 0, & \text{for } 0 \leq x \leq 1 \\
 w(0, t) = w(1, t) = 0, & \text{for } t > 0.
\end{cases}$$

By using the comparison principle, it follows that, for all $x \in [0, 1], t > 0$, the following holds:

$$u(x, t) \geq w(x, t) = \frac{1}{2} (1 - e^{-2t}) \cdot x(1 - x) = (1 - e^{-2t})v(x).$$

d) Combining the results of parts b) and c), it follows that, for all $x \in [0, 1], t > 0$, it holds that:

$$(1 - e^{-2t})v(x) \leq u(x, t) \leq v(x).$$

Letting $t \to \infty$, it follows that:

$$u(x, t) \to v(x)$$

as $t \to \infty$. □

Exercise 2. a) Find the function u solving (1) of the previous exercise by using separation of variables. Leave the Fourier coefficients in the form of an integral. [HINT: Consider the function $w := u - v$ for u, v as in the previous exercise.]

b) Show that this is the unique solution of the problem (1).

c) By using the formula from part a), give an alternative proof of the fact that $u(x, t) \to v(x)$ as $t \to \infty$. In this part, one is allowed to assume that the Fourier coefficients at time zero are absolutely summable without proof.

Solution:

a) Let $\tilde{u}(x, t) := u(x, t) - \frac{1}{2}x(1 - x)$. Then the function \tilde{u} solves:

$$\begin{cases}
 \tilde{u}_t(x, t) - \tilde{u}_{xx}(x, t) = 0, & \text{for } 0 < x < 1, t > 0 \\
 \tilde{u}(x, 0) = -\frac{1}{2}x(1 - x), & \text{for } 0 \leq x \leq 1 \\
 \tilde{u}(0, t) = \tilde{u}(1, t) = 0, & \text{for } t > 0.
\end{cases}$$

We look for \tilde{u} in the form of a Fourier sine series with coefficients which depend on t.

$$\tilde{u}(x, t) = \sum_{n=1}^{\infty} A_n(t) \sin(n\pi x).$$
We first set \(t = 0 \) to deduce that:
\[
\tilde{u}(x,0) = -\frac{1}{2} x(1-x) = \sum_{n=1}^{\infty} A_n(0) \sin(n\pi x) = -\frac{1}{2} x(1-x).
\]
Hence, \(A_n(0) \) equals the \(n \)-th Fourier sine series coefficient of the function \(-\frac{1}{2} x(1-x)\) on \([0,1]\). In particular,
\[
A_n(0) = 2 \int_0^1 \left(-\frac{1}{2} x(1-x) \right) \sin(n\pi x) \, dx.
\]
In order for \(\tilde{u} \) to solve the heat equation, we need:
\[
A_n'(t) - n^2 \pi^2 A_n(t) = 0.
\]
Hence:
\[
A_n(t) = A_n(0) \cdot e^{-n^2 \pi^2 t}.
\]
Consequently:
\[
\tilde{u}(x,t) = \sum_{n=1}^{\infty} A_n(0) \cdot e^{-n^2 \pi^2 t} \cdot \sin(n\pi x).
\]
We then deduce that:
\[
u(x,t) = \frac{1}{2} x(1-x) + \sum_{n=1}^{\infty} A_n(0) \cdot e^{-n^2 \pi^2 t} \cdot \sin(n\pi x).
\]
b) Uniqueness of the problem (1) was shown in class by using the maximum principle and by using the energy method.
c) We note that:
\[
|u(x,t) - v(x)| = \left| \sum_{n=1}^{\infty} A_n(0) \cdot e^{-n^2 \pi^2 t} \cdot \sin(n\pi x) \right| \leq \sum_{n=1}^{\infty} |A_n(0)| \cdot e^{-n^2 \pi^2 t} \leq e^{-\pi^2 t} \cdot \sum_{n=1}^{\infty} |A_n(0)|.
\]
As is noted in the problem, we are allowed to assume that \(\sum_{n=1}^{\infty} |A_n(0)| < \infty \).

The claim now follows. \(\square \)

Exercise 3. Suppose that \(u : \mathbb{R}^3 \to \mathbb{R} \) is a harmonic function.

a) By using the Mean Value Property (in terms of averages over spheres), show that, for all \(x \in \mathbb{R}^3 \), and for all \(R > 0 \), one has:
\[
u(x) = \frac{3}{4\pi R^3} \int_{B(x,R)} u(y) \, dy.
\]
b) Suppose, moreover, that \(\int_{\mathbb{R}^3} |u(y)| \, dy < \infty \). Show that then, one necessarily obtains:
\[
u(x) = 0
\]
for all \(x \in \mathbb{R}^3 \).

\(^1 \) We can integrate by parts twice in the definition of \(A_n(0) \) and use the fact that \(-\frac{1}{2} x(1-x)\) vanishes at \(x = 0 \) and \(x = 1 \) in order to deduce that:
\[
|A_n(0)| \leq \frac{C}{n^2},
\]
from where it indeed follows that \(\sum_{n=1}^{\infty} |A_n(0)| < \infty \).
Solution:

a) Let us fix \(x \in \mathbb{R}^3 \). The Mean Value Property, proved in Exercise 1 of Homework Assignment 7, implies that, for all \(r > 0 \):

\[
(2) \quad u(x) = \frac{1}{4\pi r^2} \int_{\partial B(x,r)} u(y) dS(y).
\]

We note that:

\[
\frac{3}{4\pi R^3} \int_{B(x,R)} u(y) dS(y) = \frac{3}{4\pi R^3} \int_0^R \left(\int_{\partial B(x,r)} u(y) dS(y) \right) dr.
\]

By the Mean Value Property (2), it follows that this expression equals:

\[
\frac{3}{4\pi R^3} \int_0^R 4\pi r^2 u(x) \, dr = u(x) \cdot \frac{3}{4\pi R^3} \cdot \int_0^R 4\pi r^2 \, dr = u(x).
\]

b) We note that, by part a), it follows that:

\[
|u(x)| \leq \frac{3}{4\pi R^3} \int_{B(x,R)} |u(y)| dy \leq \frac{3}{4\pi R^3} \int_{\mathbb{R}^3} |u(y)| dy.
\]

Since \(\int_{\mathbb{R}^3} |u(y)| \, dy < \infty \), we can let \(R \to \infty \) to deduce that \(|u(x)| = 0 \). It follows that \(u \) is identically equal to zero. \(\square \)

Exercise 4. Suppose that \(u : B(0,2) \to \mathbb{R} \) is a harmonic function on the open ball \(B(0,2) \subseteq \mathbb{R}^2 \), which is continuous on its closure \(\overline{B(0,2)} \). Suppose that, in polar coordinates:

\[
u(2, \theta) = 3 \sin 5\theta + 1\]

for all \(\theta \in [0, 2\pi] \).

a) Find the maximum and minimum value of \(u \) in \(\overline{B(0,2)} \) without explicitly solving the Laplace equation.

b) Calculate \(u(0) \) without explicitly solving the Laplace equation.

Solution:

a) By using the weak maximum principle for solutions to the Laplace equation, we know that the maximum of the function \(u \) on \(\overline{B(0,2)} \) is achieved on \(\partial B(0,2) \). We observe that the function \(u(2, \theta) = 3 \sin 5\theta + 1 \) takes values in \([-2, 4]\). It equals \(-2\) when \(\sin 5\theta = -1 \), which happens at \(\theta = \frac{2\pi}{10} \) (for example). Moreover \(u(2, \theta) = 4 \) when \(\sin 5\theta = 1 \), which happens at \(\theta = \frac{\pi}{10} \) (for example). Hence, the maximum value of \(u \) on \(\overline{B(0,2)} \) is 4 and the minimum value of \(u \) on \(B(0,2) \) is \(-2\).

b) We use the Mean Value Property to deduce that \(u(0) \) equals the average of \(u \) over the circle \(\partial B(0,2) \). Since the average of the \(3 \sin 5\theta \) term equals zero, it follows that \(u(0) = 1 \). \(\square \)