My research interests lie in the fields of arithmetic geometry and algebraic number theory. Currently I am thinking about local-global principles for algebraic groups, anabelian geometry, Galois representations, supersingular (abelian) varieties, and Belyi maps.

During my PhD I also worked on adelic algebraic groups, automorphic representations, and Galois representations attached to abelian varieties.

**Keywords:** Algebraic groups, local-global principles, Galois representations, anabelian geometry, arithmetic curves, Neukirch-Uchida theory, abelian varieties, class field theory, (Dirichlet and Artin) *L*-series and zeta functions.

** 6. Fully maximal and fully minimal abelian varieties** (submitted, ArXiV), with R. Pries.

**5. Dynamical Belyi maps** (to appear in *Women in Numbers Europe 2*, Association for Women in Mathematics Series, Springer, 2018, ArXiV), with J. Anderson, I. Bouw, O. Ejder, N. Girgin, and M. Manes.

**4. Hecke algebras for GLn over local fields** (*Archiv der Mathematik*, 107(4), 341-353, ArXiV).

**3. Large Galois images for Jacobian varieties of genus 3 curves** (*Acta Arithmetica*, 174(4), 339-366, ArXiV), with S. Arias-de-Reyna, C. Armana, M. Rebolledo, L. Thomas, and N. Vila.

**2. Hecke algebra isomorphisms and adelic points on algebraic groups** (*Documenta Mathematica* 22 (2017), 851--871, pdf), with G. Cornelissen.

**1. Galois representations and symplectic Galois groups over Q** (*Proceedings of Women in Numbers Europe - Research Directions in Number Theory*, ArXiV), with S. Arias-de-Reyna, C. Armana, M. Rebolledo, L. Thomas, and N. Vila.

**Hecke algebras, Galois representations, and abelian varieties** (available here).

If you would like an updated version with fewer typos/mistakes, please send me an email.

**Reconstruction of function fields**, (notes for an anabelian geometry reading seminar talk at the Courant Institute, New York in Spring 2018).