SOME APPLICATIONS OF THE INEQUALITY OF ARITHMETIC AND GEOMETRIC MEANS TO POLYNOMIAL EQUATIONS

HERBERT S. WILF

The purpose of this note is to point out a simple generalization of the inequality

$$(z_1 z_2 \cdots z_n)^{1/n} \leq \frac{1}{n} (z_1 + \cdots + z_n)$$

of arithmetic and geometric means, which will hold when the arguments of the complex numbers z_1, \cdots, z_n are suitably restricted. We shall apply the resulting inequality to the roots of polynomial equations, obtaining first a quantitative form of the Gauss-Lucas theorem, and then some relationships between the coefficients of a polynomial and the size of a sector containing its roots.

1. The inequality. The basic result is

Theorem 1. Suppose

$$|\arg z_i| \leq \psi < \frac{\pi}{2}, \quad i = 1, 2, \cdots, n.$$

Then

$$(1) \quad |z_1 z_2 \cdots z_n|^{1/n} < \left(\sec \psi \right) \frac{1}{n} \left| z_1 + z_2 + \cdots + z_n \right|$$

unless n is even and $z_1 = \cdots = z_{n/2} = \overline{z}_{(n/2)+1} = \cdots = \overline{z}_n = r e^{i\psi}$, in which case equality holds.

Proof. We have

$$|z_1 + z_2 + \cdots + z_n| \geq \left| \text{Re}(z_1 + \cdots + z_n) \right|$$

$$= \left(|z_1| \cos \phi_1 + |z_2| \cos \phi_2 + \cdots \right.$$

$$\left. + |z_n| \cos \phi_n \right)$$

$$(2) \quad \geq \left(\cos \psi \left(|z_1| + \cdots + |z_n| \right) \right)$$

$$\geq n \cos \psi \left(|z_1| + |z_2| + \cdots + |z_n| \right)^{1/n}$$

Received by the editors March 2, 1962.
as claimed. All signs of equality hold only when
(a) \(\text{Im} (z_1 + \cdots + z_n) = 0 \)
(b) \(\cos \phi_i = \cos \psi \) \((i = 1, 2, \cdots, n)\)
(c) \(|z_1| = |z_2| = \cdots = |z_n| \)

which imply the configuration stated in the theorem. For odd \(n \) the constant \(\sec \psi \) is only asymptotically best possible.

2. Application to polynomials. Let

(4) \(P(z) = a_0 + a_1z + \cdots + a_nz^n = a_n(z - z_1) \cdots (z - z_n) \)

be given and let \(K \) denote the convex hull of the zeros \(z_1, \cdots, z_n \) of \(P(z) \). Let \(z \) be outside \(K \), and suppose that, from \(z, K \) subtends an angle \(2\psi \). Then the spread in the arguments of the numbers

\[
\frac{1}{z - z_1}, \ldots, \frac{1}{z - z_n}
\]

is at most \(2\psi \), and from Theorem 1,

\[
\left| \frac{1}{(z - z_1)} \cdots \frac{1}{(z - z_n)} \right|^{1/n} \leq \left(\sec \psi \right)^{-1/n} \frac{1}{n} \left| \sum_{j=1}^{n} \frac{1}{z - z_j} \right|.
\]

But this is just the assertion that

\[
\left| \frac{a_n}{P(z)} \right|^{1/n} \leq \frac{\sec \psi}{n} \left| \frac{P'(z)}{P(z)} \right|,
\]

and we have proved

Theorem 2. If \(z \) is a point from which the convex hull of the zeros of the polynomial \(P(z) \) of degree \(n \) subtends an angle \(2\psi < \pi \), then

(5) \(|P'(z)| \geq n |a_n|^{1/n} (\cos \psi) \left| \frac{P(z)}{P(z)} \right|^{1-(1/n)} \).

Corollary 1. The zeros of \(P'(z) \) lie in the convex hull of the zeros of \(P(z) \) (Gauss-Lucas).

Corollary 2. If the zeros of \(P(z) \) lie in the unit circle, then we have for \(|z| > 1 \),

(6) \(\left| P'(z) \right| \geq \frac{n |a_n|^{1/n}}{\sqrt{\left(1 - \frac{1}{|z|^2} \right)}} \left| P(z) \right|^{1-(1/n)} \).
Theorem 3. The zeros of the polynomial

\[P(z) = a_0 + a_1 z + \cdots + a_n z^n, \]

are not contained in any sector of central angle less than

\[2 \cos^{-1} \left\{ \min_{0 \leq k \leq n-1} \left| \frac{a_{n-k}}{a_k} \left(\frac{n}{k} \right)^{1/n-k} \right| \right\}. \]

Proof. Suppose the zeros of \(P(z) \) lie in a sector of angle \(2\psi < \pi \). From Theorem 1,

\[\left| \frac{a_0}{a_n} \right|^{1/n} \leq \frac{\sec \psi}{n} \left| \frac{a_{n-1}}{a_n} \right|, \]

or

\[\sec \psi \geq n \left| a_n \right|^{1-(1/n)} \left| a_0 \right|^{1/n} \left| a_{n-1} \right|^{-1}. \]

Applying this result to

\[P^{(k)}(z) = \sum_{r=0}^{n-k} \frac{(n+k)!}{\nu!} a_{r+k} z^r, \]

which, by Corollary 1 also satisfies the hypotheses, we find

\[\sec \psi \geq \left| \frac{na_n}{a_{n-1}} \right|^{1/n-k} \left(\frac{a_n}{a_{n-k}} \left(\frac{n}{k} \right)^{1/(n-k)} \right)^{-1} \]

\((k = 0, 1, \cdots, n-1) \),

and the result follows.

Theorem 4. Under the hypotheses of Theorem 2, let \(\rho \) denote the distance from \(z \) to the center of gravity of the zeros of \(P(z) \). Then

\[(7) \quad \left| P(z) \right| \leq \left| a_n \right| (\rho \sec \psi)^n. \]

Proof. Apply Theorem 1 to the numbers \(z - z_1, \cdots, z - z_n \).

University of Illinois