1. Show that our two definitions of orientability of a manifold \(M^n \) are equivalent:
 (a) There exists an atlas \((U_\alpha, x_\alpha)\) such that \(D(x_\alpha \circ x^{-1}_\beta)\) is orientation preserving (i.e. has positive determinant).
 (b) There exists a choice of orientations on \(T_p M \) for all \(p \), i.e. a choice of (equivalence classes) of basis, which represents one of the possible orientations on this vector space, such that it varies smoothly (or continuously) with \(p \). I.e. for each \(p \in M \), there exists a neighborhood \(U \) of \(p \) and smooth (continuous is sufficient) vector fields \(Y_1, \ldots, Y_n \) on \(U \) such that for all \(p \in U \), the basis \(Y_1(p), \ldots, Y_n(p) \) represents the orientation class you chose on \(T_p M \).

2. Let \(\Gamma \) be a group that acts properly discontinuously on a manifold \(M^n \) with quotient \(M/\Gamma \).
 Recall we already showed that \(M/\Gamma \) is a manifold.
 Using the definition of orientability in (1) (b):
 (a) Show that if \(M \) is orientable and \(\Gamma \) acts orientation preserving on \(M \), then \(M/\Gamma \) is orientable as well.
 (b) If \(M/\Gamma \) is orientable, show that there exists an orientation on \(M \) such that \(\Gamma \) acts orientation preserving on \(M \).
 (c) Make precise that \(\mathbb{R}P^n \) is orientable iff \(n \) is odd. I.e. carefully define the orientation of the sphere, and show the restriction of the antipodal map to the sphere is orientation preserving iff \(n \) is odd. Then also make precise again that all lens space are orientable.

3. Let \(F \) and \(G \) be two vector bundles over \(M \) and define the direct sum \(E = F \oplus G \), where the fiber \(E_p \) over \(p \in M \) is the direct sum of the vector spaces \(F_p \) and \(G_p \).
 (a) Show that \(E \) is in fact a vector bundle.
 (b) Define the orientation of a vector bundle, and show that if both \(F \) and \(G \) are orientable, then \(E \) is orientable as well.
 (c) Show that if both \(E \) and \(F \) are orientable, then \(G \) is orientable as well.

4. Show that a one dimensional vector bundle (i.e., the fiber over \(p \in M^n \) is one dimensional) is trivial iff it is orientable.

5. Let \(f: M \to B \) be a submersion.
 (a) Show that \(TM = f^*(TB) \oplus V \) where \(f^*(TB) \) is the ”pull back” vector bundle over \(M \) whose fiber over \(p \in M \) is \(T_{f(p)}B \), and \(V \) is the ”vertical” bundle over \(M \) whose fiber over \(p \in M \) is the tangent space of the fiber through \(p \), i.e. \(T_p(f^{-1}(f(p))) \).
 (b) Show that \(V \) is isomorphic to the vector bundle \(\ker D(f) \) and \(f^*(TB) \) to the normal bundle, if we endow \(M \) with a Riemannian metric.
 (c) Show that the fibers of \(f \) are orientable if \(M \) and \(B \) are. In particular, the Brieskorn varieties from the last assignment are orientable.

6. (Extra credit 1)
 Find a base \(B \), and two vector bundles \(F \) and \(G \) over \(B \), such that both \(F \) and \(G \) are non-orientable, but \(E = F \oplus G \) is non-orientable as well.
(7) (Extra credit 2)

For those who know what the fundamental group $\pi_1(M)$ is. If you do not, you can look up the definition, which is not difficult.
(a) Construct a map $O : \pi_1(M) \to \mathbb{Z}_2$.
(b) Make this definition rigorous and show it is well defined and a homomorphism.
(c) Show that O is trivial iff M is orientable.

Comment: Next semester you will learn that a homomorphism $\alpha : \pi_1(M) \to \mathbb{Z}_2$ is an element of $H^1(M, \mathbb{Z}_2)$, which is called the first Stiefel Whitney class.