(1) Prove the following facts you know from calculus. Let \(f : (a, b) \to \mathbb{R} \) and \(x_0 \in (a, b) \) such that \(f \) is differentiable in \((a, b)\) and \(f''(x_0) \) exists.

(a) If \(f \) has a local min at \(x_0 \), then \(f'(x_0) = 0 \) (proved in class) and \(f''(x_0) \geq 0 \).

(b) If \(f'(x_0) = 0 \) and \(f''(x_0) > 0 \) show that \(f \) has a local min at \(x_0 \).

(2) If \(f \) has a (strict) local min at \(x_0 \) (i.e. \(f(x) > f(x_0) \) for \(x \neq x_0 \) but near \(x_0 \)), is it true that there exists a small neighborhood \((a, b)\) of \(x_0 \) such that \(f \) is decreasing on \((a, x_0)\) and increasing on \((x_0, b)\)? Prove or counter example.

(3) Let \(f : \mathbb{R} \to \mathbb{R} \) be defined by \(f(x) = x^a \sin(x^b) \) for \(x \neq 0 \) and \(f(0) = 0 \) for some real numbers \(a, b \). Determine under which conditions on \(a, b \) is \(f \) is continuous.

When if \(f \) differentiable? When is \(f' \) continuous. More generally, for a given \(n \), when does \(f^{(n)}(x) \) exists (for all \(x \)) and when is it continuous.

(4) Let \(f : \mathbb{R} \to \mathbb{R} \) be a function with two continuous derivatives and \(f(0) = 2, \ f(1) = 0, \) and \(f(3) = 1 \). Prove there exists \(a \in (0, 3) \) with \(f''(a) > 2/3 \).

(5) Prove that a function \(f : \mathbb{R} \to \mathbb{R} \) with \(|f'(x)| < A \) for some \(A < 1 \) has a fixed point. Is this also true if \(A = 1 \)?

(6) Show that if \(f : E \to \mathbb{R}, \ E \subset \mathbb{R} \) is differentiable with \(|f'(x)| < A \) for some \(A > 0 \) and all \(x \in E \), then \(f \) is uniformly continuous.

(7) Prove the following version of L’Hopital: If \(\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = \infty \) and \(\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = L < \infty \), then \(\lim_{x \to \infty} \frac{f(x)}{g(x)} = L \) (assuming that \(g(x) \neq 0 \) and \(g'(x) \neq 0 \) for \(x \) large).

(8) (Extra Credit) Let \(f(x) = \alpha x + x^2 \sin(1/x) \) if \(x \neq 0 \) and \(f(0) = 0 \). If \(0 < \alpha \leq 1 \), show that although \(f'(0) > 0 \), \(f \) is not increasing in any interval containing 0. But if \(\alpha > 1 \), show that \(f \) is increasing in some interval containing 0.