Due: Friday September 22nd by 5pm, put it in Joe’s mailbox. A portion of the homework will be graded (by Joe Hoisington) and returned to you.

(1) Let \(f: \mathbb{RP}^2 \to \mathbb{R}^6 \) defined by
\[
[x, y, z] \mapsto (x^2, y^2, z^2, \sqrt{2}xy, \sqrt{2}xz, \sqrt{2}yz)
\]

(a) Show that \(f \) is an embedding of \(\mathbb{RP}^2 \) into \(\mathbb{R}^6 \) with image in \(S^5(1) \).

(b) If \(V^5 = \{ (y^1, ..., y^6) \in \mathbb{R}^6 \mid y^1 + y^2 + y^3 = 1 \} \) show that \(f(\mathbb{RP}^2) \subset V^5 \) and \(f(\mathbb{RP}^2) \subset V^5 \cap S^5(1) = S^4(\sqrt{2}/3) \). Hence \(f \) is an embedding into \(S^4(\sqrt{2}/3) \) which, via stereographic projection, induces an embedding into \(\mathbb{R}^4 \).

Remember that I mentioned that there is no embedding of \(\mathbb{RP}^2 \) into \(\mathbb{R}^3 \).

(2) Define a \(C^k \) derivation on a manifold for any finite integer \(k > 0 \), denoted by \(V_k \)

(a) Show that \(V_k \) is a vector space and define a natural injection of \(T_pM \) into this vector space.

(b) Explain why the proof that this injection is an isomorphism does not work any more as it did for \(C^\infty \) derivations.

(c) Show that \(V_k \) is isomorphic to the dual space \((F_p/F_p^2)^* \) where \(F_p \) is the vector space of functions that vanish at \(p \), and \(F_p^2 \) the linear subspace spanned by products of functions in \(F_p \).

(3) (Extra Credit) Show that \(V_k \) is infinite dimensional. (Try this first for functions from \(\mathbb{R} \) to \(\mathbb{R} \))