(1) Show that \(\text{det} : \text{GL}(n, \mathbb{R}) \to (\mathbb{R}\setminus\{0\}, \cdot) \) is a Lie group homomorphism with \(d\text{det} = \text{tr} \).

Solution: Since \(\text{det}(AB) = \text{det}(A)\text{det}(B) \), it is a homeomorphism and is smooth since it is polynomial in terms of the coefficients of \(A \). Since \(\text{det}(e^A) = e^{\text{tr}A} \) (Show this first for diagonalizable matrices and then for all by denseness). Replacing \(A \) by \(tA \) and differentiating gives \(d(\text{det})_{\text{Id}}(A) = \text{tr} A \).

(2) Classify all two dimensional Lie groups.

Solution:\([g, g] \) has dimension 0 or 1. In the first case, \(g \) is abelian, and in the second case there exists a basis \(u, v \) with \([u, v] = v \). If \(g \) is abelian, then \(G \) is abelian and hence \(G = \mathbb{R}^2, \mathbb{R} \times S^1 \) or \(T^2 \). In the second case, the simply connected Lie group with Lie algebra \(g \) is the Lie group in Problem 9 (for \(n = 1 \)). One easily checks it has trivial center, and hence in this case there is only one Lie group with Lie algebra \(g \).

(3) Let \(H \) be a connected Lie subgroup of a connected Lie group \(G \). Show that the Lie algebra of the normalizer \(N_G(H) = \{ g \in G \mid gHg^{-1} \subset H \} \) is the normalizer \(\{ X \in g \mid [X, h] \subset h \} \).

Solution: \(X \) lies in the Lie algebra of \(N_G(H) \) iff \(\exp(tX) \in N_G(H) \) for all \(t \), i.e. \(C_{\exp(tX)}(H) \subset H \) (Notice this is equivalent to equality since both groups are connected). This holds iff \(C_{\exp(tX)}(\exp(sZ)) \subset H \) for all \(s, t \) and \(Z \in h \) since \(H \) is generated by a neighborhood of \(e \). But \(C_{\exp(tX)}(\exp(sZ)) = \exp(s \text{Ad}(\exp(tX))Z) \) and this lies in \(H \) for all \(s \) iff \(\text{Ad}(\exp(tX))Z \in h \). Finally \(\text{Ad}(\exp(tX))Z = e^{t\text{ad}X}(Z) \) implies that this holds iff \([X, Z] \in h \) for all \(Z \), i.e. \([X, h] \subset h \).

(4) Determine the image of \(\exp : \mathfrak{sl}(2, \mathbb{R}) \to \text{SL}(2, \mathbb{R}) \). Is it onto or one to one?

Solution: Since \(A e^B A^{-1} = e^{ABA^{-1}} \), it follows that \(\exp \) takes conjugacy classes to conjugacy classes. On the Lie algebra level we have the 3 conjugacy classes:

\[
\left(\begin{array}{cc} a & 0 \\ 0 & -a \end{array} \right), \quad \left(\begin{array}{cc} 0 & a \\ 0 & 0 \end{array} \right), \quad \left(\begin{array}{cc} 0 & a \\ -a & 0 \end{array} \right)
\]

with \(a \in \mathbb{R} \)

with exponential image

\[
\left(\begin{array}{cc} e^a & 0 \\ 0 & e^{-a} \end{array} \right), \quad \left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array} \right), \quad \left(\begin{array}{cc} \cos(a) & -\sin(a) \\ \sin(a) & \cos(a) \end{array} \right)
\]

On the other hand, on the Lie group level we have the conjugacy classes

\[
\left(\begin{array}{cc} \lambda & 0 \\ 0 & 1/\lambda \end{array} \right), \quad \left(\begin{array}{cc} \epsilon & a \\ 0 & \epsilon \end{array} \right), \quad \left(\begin{array}{cc} \cos(a) & -\sin(a) \\ \sin(a) & \cos(a) \end{array} \right), \quad \lambda \neq 0, \epsilon = \pm 1
\]

Thus the only matrices that are not in the image of \(\exp \) are

\[
\left(\begin{array}{cc} \lambda & 0 \\ 0 & 1/\lambda \end{array} \right), \quad \left(\begin{array}{cc} -1 & a \\ 0 & -1 \end{array} \right)
\]

with \(\lambda < 0 \).
and their conjugates. The first conjugacy class can be characterized by \(\text{tr} A < -2 \), whereas \(\text{tr} A = -2 \) contains 2 conjugacy classes not in the image (besides \(\text{Id} \in \text{Im exp} \)). The rotations show that \(\exp \) is not injective.

(5) Find an automorphism of \(SO(2n) \) which is not inner.

Solution: Let \(A \in O(n) \) but \(A \notin SO(n) \), and \(\phi = C_A \). \(\phi \) is an automorphism since conjugation is, and it preserves the identity component. Thus it lies in \(\text{Aut}(SO(n)) \). If \(C_A = C_B \) with \(B \in SO(n) \), then \(C_{AB^{-1}} = \text{Id} \), i.e. \(AB^{-1} \in Z(O(n)) = \{ \pm \text{Id} \} \). Hence \(B = \pm A \) and \(\det B = -1 \) implies \(B = A \). Notice that this does not work for \(SO(2n+1) \), in fact all automorphisms of \(SO(2n+1) \) are inner.

(6) Show that in the polar decomposition of \(A \in O(p, q) \), \(p, q \geq 1 \), the orthogonal matrix \(R \) lies in \(O(p) \times O(q) \).

Solution: Following the proof of Proposition 2.26 for the polar decomposition of \(\text{Sp}(n, \mathbb{R}) \), and replacing \(J \) by \(I_{p,q} \), we see that \(A = RS \) with \(A \in O(p, q) \) and \(R \in O(p+q) \) implies that \(R^T I_{p,q} R = I_{p,q} \). Since \(R^T = R^{-1} \) this means that \(R \) commutes with \(I_{p,q} \) and easily implies that \(R \) must have block form \(R = \text{diag}(L, M) \). But \(R \in O(p+q) \) shows that \(L \in O(p) \), \(M \in O(q) \).

(7) Show that a Lie algebra is semisimple if and only if it has no abelian ideal. This should be proved directly from the definition that \(g \) is semisimple if it has no solvable ideals (i.e., without quoting other theorems).

Solution: \(g \) is semisimple if it has no solvable ideals. So clearly, if it has an abelian ideal, it is not semisimple. For the converse, assume that \(\mathfrak{a} \) a \(k \)-step solvable ideal of \(g \). Then \(\mathfrak{a}_{k-1} \) is an abelian ideal of \(\mathfrak{a} \). We need to show it is an ideal in \(g \) as well. But this follows by induction on the descending series \(\mathfrak{a}_i \), \(i = 0, \ldots , k-1 \) using the Jacobi identity: \([\mathfrak{g}, \mathfrak{a}_{i+1}] = [\mathfrak{g}, [\mathfrak{a}_i, \mathfrak{a}_i]] \subset [\mathfrak{a}_i, [\mathfrak{g}, \mathfrak{a}_i]] \subset [\mathfrak{a}_i, \mathfrak{a}_i] \subset \mathfrak{a}_{i+1} \).

(8) If \(\mathfrak{a} \) is an abelian ideal of \(g \), show that \(\mathfrak{a} \subset \ker B \), where \(B \) is the Killing form of \(g \).

Solution: This is the second part of the proof of Theorem 3.19.

(9) Let \(G = \mathbb{R}^n \times \mathbb{R}^+ \) with multiplication \((x, t) \cdot (y, s) = (x + ty, ts) \).

(a) Show that \(G \) is a Lie group.

(b) Compute the left invariant vector fields \(X_i \), \(T \) whose value at the identity is the standard basis of \(\mathbb{R}^n \) respectively \(\mathbb{R} \).

(c) Compute the Lie algebra of \(G \). Is \(G \) nilpotent, solvable or semisimple?

(d) Compute the Killing form of \(G \).

Solution: (a) One can either prove that \(G \) is a Lie group directly, or observe that it agrees with the multiplication in the matrix group

\[
\begin{pmatrix}
t & x \\
0 & \text{Id}_n
\end{pmatrix}
\]

where \(x \) is regarded as a row vector.
(b) $L_{x,t}$ is linear and hence has derivative $t \text{Id}$. This implies that $X_i = t e_i$ and $T = t \frac{d}{dt}$.

(c) Using the definition of Lie brackets in local coordinates, one shows that the only non-vanishing Lie brackets are $[T, X_i] = X_i$. This implies that \mathfrak{g} is solvable (and hence not semisimple), but not nilpotent.

(d) Since X_i span an abelian ideal $B(X_i, X_j) = B(X_i, T) = 0$ by Problem. But $\text{ad}^2 (X_i) = X_i$ and hence $B(T, T) = n$.

(10) For the geometers among you, consider the Lie group from Problem 9 and put a left invariant metric on it such that X_i, T is an orthonormal basis at every point. Show that this metric is isometric to hyperbolic space \mathbb{H}^{n+1} and that G acts by isometries.

Solution: In the coordinates x_i, t with coordinates vector fields $e_i, \frac{d}{dt}$, part (b) implies that $||e_i|| = ||\frac{d}{dt}|| = 1/t$ and $\langle X_i, \frac{d}{dt} \rangle = 0$. Thus the metric is given by

$$ds^2 = \frac{dx_1^2 + \cdots + dx_n^2 + dt^2}{t^2}$$

which is precisely the hyperbolic metric in the upper half space model.