ASSIGNMENT # 7
MATH 660 , DIFFERENTIAL GEOMETRY

(1) Let \(u, v, z \in T_pM \) and \(f(t, s) \) a 2-parameter family with \(f(0, 0) = p, \ f_t(0, 0) = u, \ f_s(0, 0) = v \). Define \(z(s_0) \in T_pM \) as the parallel translate of \(z \) around the closed curve which is the image under \(f \) of the boundary of the square \(0 \leq t \leq s_0, \ 0 \leq s \leq s_c \). Show that
\[
R(u, v)z = \lim_{s \to 0} \frac{z(s) - z}{s^2}
\]
Hint: Define a vector field \(Z(t, s) \) along \(f \) by parallel translating \(z \) first along the \(t \) parameter curve \(s = 0 \) and then along the \(s \) parameter curve to \(f(t, s) \) and then consider \(R(f_t, f_s)Z \).

(2) Let \(M^2 \) be a 2-dimensional Riemannian manifold.
(a) Show that the conjugate points along a geodesic are isolated and have multiplicity one.
(b) Let \(\gamma \) be a geodesic and assume that \(\gamma(t_0) \) is conjugate to \(\gamma(0) \) along \(\gamma \). Show that nearby geodesics intersect \(\gamma \) near \(\gamma(t_0) \) but after \(t_0 \).
(c) Let \(C_k = \{ v \in T_pM \mid \exp(v) \) is the \(k \)-th conjugate point to \(p \) along the geodesic \(t \to \exp(tv) \} \). Show that \(C_k \subset T_pM \) is a smooth curve. Is \(\exp(C_k) \) smooth?

(3) Let \(\gamma(t), \ 0 \leq t \leq t_0 \) be a geodesic without self intersections such that \(\gamma(t) \) is not conjugate to \(\gamma(0) \) for all \(t \leq t_0 \). Show that \(\gamma \) is locally minimizing, i.e. there exists a neighborhood \(U \) of \(\text{Im}(\gamma) \) such that any curve in \(U \) from \(\gamma(0) \) to \(\gamma(t_0) \) has length \(\geq L(\gamma) \) and equal length iff it agrees with \(\gamma \) up to parametrization.

(4) Consider a product metric on \(M \times N \).
(a) Show that the sectional curvature of a 2-plane spanned by \((X_1, X_2) \) and \((Y_1, Y_2) \) is given by the mean value
\[
\frac{|X_1 \wedge Y_1|^2 \sec(X_1, Y_1) + |X_2 \wedge Y_2|^2 \sec(X_2, Y_2)}{|(X_1, Y_1) \wedge (X_2, Y_2)|^2}
\]
where \(\sec(X_1, Y_1) = 0 \) if \(X_1 \) and \(Y_1 \) are linearly dependent.
(b) Show that \(M \times N \) contains a flat totally geodesic surface.
(c) Show that the product metric on \(\mathbb{S}^n(r) \times \mathbb{S}^m(s) \) has \(\sec \geq 0 \) and \(\text{Ric} > 0 \) and becomes Einstein for appropriate \(r \) and \(s \).

(5) Describe the first conjugate locus to \(p \in M \), both as a subset of \(T_pM \) and of \(M \), for the product metric on \(\mathbb{S}^n(1) \times \mathbb{S}^m(1) \) for all \(n, m \geq 1 \).

(6) Use Jacobi fields to give a simple proof of the following facts:
(a) All distance spheres \(\partial B_r(p) \) are orthogonal to the geodesics starting at \(p \).
(b) The Gauss curvature of a metric in polar coordinates \(ds^2 = dt^2 + f(t, \theta)^2 d\theta^2 \) is given by \(-f_{tt}/f \).