ASSIGNMENT # 10
MATH 660 , DIFFERENTIAL GEOMETRY

(1) Let \(N^k \subset M^n \) be a compact submanifold and
\[
\nu_\epsilon = \{ v \in T_pM \mid p \in N, \text{ and } v \perp T_pN \text{ with } |v| \leq \epsilon \}.
\]
Show that there exists an \(\epsilon > 0 \) such that \(\exp^\perp : \nu_\epsilon \to M \) (where \(\exp^\perp(v) = \exp_p(v) \) for \(v \in T_pM \)) is a diffeomorphism onto its image. In this case \(T_\epsilon(N) = \exp^\perp(\nu_\epsilon) \) is called an \(\epsilon \) tubular neighborhood of \(N \).

(2) \(N^k \subset M^n \) as above. Prove an analogue of the Gauss Lemma: The geodesic \(\exp^\perp(tv) \) meets \(\partial T_\delta(N) \) orthogonally for all \(\delta \leq \epsilon \).

(3) \(N^k \subset M^n \) as above. If \(\gamma(t) = \exp^\perp(tv), \ t \leq a \) is a geodesic in a tubular neighborhood, show that \(\gamma \) is the shortest connection from \(N \) to \(\gamma(a) \).

(4) Let \(N^k \subset R^N \) be a submanifold in Euclidean space. What are the focal points of \(N \) along a geodesic orthogonal to \(N \)?

(5) What is the analogue of the index form for curves starting at \(p \in M \) and ending at \(N \subset M \). Show that it is positive definite if there are no focal points.