REVISITING HOMOGENEOUS SPACES WITH POSITIVE CURVATURE

BURKHARD WILKING AND WOLFGANG ZILLER

The classification of compact simply connected homogeneous spaces of positive curvature is now almost 40 years old. It has been accomplished in a series of papers by M. Berger, N. Wallach, Allof-Wallach, and L. Bérard Bergery [Be, Wa, AW, BB], with an omission in [Be] as observed in [Wi1]. As was recently observed by M. Xu and J. Wolf [WX], there is a gap in Bérard Bergery’s classification of odd dimensional positively curved homogeneous spaces in the case of the Stiefel manifold $\text{Sp}(2)/\text{U}(1) = \text{SO}(5)/\text{SO}(2)$. Since this classification has been used in several other papers, for example, in the classification of positively curved cohomogeneity one manifolds in [GWZ] and positively curved polar manifolds in [FGT], it seems desirable to correct this situation. We thus present here a modern complete and self contained proof of the classification, confirming that there are indeed no new examples. To be more precise we will reprove the following

**Theorem.** Suppose a compact connected Lie group $\bar{K}$ acts isometrically, effectively and transitively on a simply connected manifold of positive sectional curvature with stabilizer group $\bar{H}$. Then the pair $(\bar{K}; \bar{H})$ is isomorphic to $(K/C; H/C)$ for one of the triples $(K, H, C)$ in the Tables A or B.

<table>
<thead>
<tr>
<th>$K$</th>
<th>$H$</th>
<th>$K/H$</th>
<th>Kernel C</th>
<th>$N(H)/H$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU(5)</td>
<td>$\text{Sp}(2) \cdot S^1$</td>
<td>$B^{13}$</td>
<td>$\mathbb{Z}_5$</td>
<td>${e}$</td>
</tr>
<tr>
<td>Sp(2)</td>
<td>$\text{Sp}(1)_{max}$</td>
<td>$B^7$</td>
<td>$\mathbb{Z}_2$</td>
<td>${e}$</td>
</tr>
<tr>
<td>SU(3) × SO(3)</td>
<td>U(2)</td>
<td>$W_{1,1}^7$</td>
<td>$\mathbb{Z}_3$</td>
<td>${e}$</td>
</tr>
<tr>
<td>SU(3)</td>
<td>$T^2$</td>
<td>$W^6$</td>
<td>$\mathbb{Z}_3$</td>
<td>$S_3$</td>
</tr>
<tr>
<td>Sp(3)</td>
<td>$\text{Sp}(1)^3$</td>
<td>$W_{12}^7$</td>
<td>$\mathbb{Z}_2$</td>
<td>$S_3$</td>
</tr>
<tr>
<td>F_4</td>
<td>Spin(8)</td>
<td>$W_{24}^7$</td>
<td>${e}$</td>
<td>$S_3$</td>
</tr>
<tr>
<td>SU(3)</td>
<td>$S^1 = \text{diag}(z^p, z^q, z^{p+q})$</td>
<td>$W_{p,q}^7$</td>
<td>$\mathbb{Z}_3$ if $p \equiv q \mod 3$</td>
<td>${e}$ if $p \neq q \mod 3$</td>
</tr>
<tr>
<td></td>
<td>$p \geq q \geq 1$, gcd($p, q$) = 1</td>
<td></td>
<td></td>
<td>$\text{SO}(3)$ if $p = q$</td>
</tr>
<tr>
<td>U(3)</td>
<td>$T^2(p, q)$</td>
<td>$W_{p,q}^7$</td>
<td>$\mathbb{Z}_{p+2q}$</td>
<td>$S^1$</td>
</tr>
</tbody>
</table>

Table A: Homogeneous spaces $M^n = K/H$ with positive sectional curvature, which are not diffeomorphic to rank one symmetric spaces.

As far as the embeddings of $H$ in $K$ are concerned, $\text{Sp}(2)S^1$ is the normalizer of $\text{Sp}(2) \subset SU(5)$ embedded by the four dimensional representation, $\text{Sp}(1)_{max}$ is the unique 3 dimensional maximal subgroup of $\text{Sp}(2)$, and in the third example $U(2)$ is the normalizer of $\Delta SU(2) \subset SU(2) \times SO(3) \subset K$. The last example is just an $S^1$ extension of the previous one and they are the Aloff Wallach spaces [AW], with $T(p, q) := \{\text{diag}(z^p\zeta, z^q, z^{p+q}) \mid z, \zeta \in S^1\}$ for $p \geq q \geq 1$, gcd($p, q$) = 1.

The first three examples are the only ones in the list which admit a normal homogeneous metric of positive sectional curvature. The first two of those were discovered by Berger [Be], while the

Date: March 16, 2015.

The second named author was supported by a grant from the National Science Foundation.
third was added in [Wi1] and is diffeomorphic to the Aloff Wallach space $W_{1,1}$. The Wallach flag manifolds $W^6$, $W^{12}$ and $W^{24}$ are the only even dimensional positively curved simply connected homogeneous spaces apart from the rank one symmetric space, [Wa]. We will not reprove that these spaces have positive curvature (see e.g. [Zi] for details). The group $C$ is defined as the intersection of $H$ with the center of $K$ and corresponds to the kernel of the action of $K$ on $K/H$. The normalizer $N(H)$ of $H$ in $K$ can be determined by a standard computation and we kept track of the isomorphism type of $N(H)/H$ in the last column, where $S_3$ stands for the permutation group with 6 elements.

<table>
<thead>
<tr>
<th>$K$</th>
<th>$H$</th>
<th>$K/H$</th>
<th>kernel $C$</th>
<th>$N(H)/H$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SO(n+1)$</td>
<td>$SO(n)$</td>
<td>$S^n$</td>
<td>${e}$</td>
<td>$\mathbb{Z}_2$ (for $n \geq 2$)</td>
</tr>
<tr>
<td>$SU(n+1)$</td>
<td>$SU(n)$</td>
<td>$S^{2n+1}$</td>
<td>${e}$</td>
<td>$\mathbb{S}^1$ (for $n \geq 2$)</td>
</tr>
<tr>
<td>$U(n+1)$</td>
<td>$U(n)$</td>
<td>$S^{2n+1}$</td>
<td>${e}$</td>
<td>$\mathbb{S}^1$</td>
</tr>
<tr>
<td>$Sp(n+1)$</td>
<td>$Sp(n)$</td>
<td>$S^{2n+3}$</td>
<td>${e}$</td>
<td>$S^3$</td>
</tr>
<tr>
<td>$Sp(n+1)Sp(1)$</td>
<td>$Sp(n)\Delta Sp(1)$</td>
<td>$S^{4n+3}$</td>
<td>$\Delta \mathbb{Z}_2$</td>
<td>$\mathbb{Z}_2$</td>
</tr>
<tr>
<td>$Sp(n+1)U(1)$</td>
<td>$Sp(n)\Delta U(1)$</td>
<td>$S^{4n+3}$</td>
<td>$\Delta \mathbb{Z}_2$</td>
<td>$\mathbb{S}^1$</td>
</tr>
<tr>
<td>$Spin(9)$</td>
<td>$Spin(7)$</td>
<td>$S^{15}$</td>
<td>${e}$</td>
<td>$\mathbb{Z}_2$</td>
</tr>
<tr>
<td>$Spin(7)$</td>
<td>$G_2$</td>
<td>$S^7$</td>
<td>${e}$</td>
<td>$\mathbb{Z}_2$</td>
</tr>
<tr>
<td>$G_2$</td>
<td>$SU(3)$</td>
<td>$S^6$</td>
<td>${e}$</td>
<td>$\mathbb{Z}_2$</td>
</tr>
<tr>
<td>$SU(n+1)$</td>
<td>$U(n)$</td>
<td>$\mathbb{C}P^n$</td>
<td>$\mathbb{Z}_{n+1}$</td>
<td>${e}$ (for $n \geq 2$)</td>
</tr>
<tr>
<td>$Sp(n+1)$</td>
<td>$Sp(n)Sp(1)$</td>
<td>$\mathbb{H}P^n$</td>
<td>$\mathbb{Z}_2$</td>
<td>${e}$ (for $n \geq 2$)</td>
</tr>
<tr>
<td>$Sp(n+1)$</td>
<td>$Sp(n)U(1)$</td>
<td>$\mathbb{C}P^{2n+1}$</td>
<td>$\mathbb{Z}_2$</td>
<td>$\mathbb{Z}_2$</td>
</tr>
<tr>
<td>$F_4$</td>
<td>$Spin(9)$</td>
<td>$\mathbb{C}aP^2$</td>
<td>${e}$</td>
<td>${e}$</td>
</tr>
</tbody>
</table>

Table B: Transitive actions on rank 1 symmetric spaces.

Here we should add that $Spin(8)$ acts in three different ways transitively on $S^7$, but up to outer automorphisms of $Spin(8)$ the actions are isomorphic.

A non simply connected homogeneous space arises from a simply connected space $K/H$ by replacing $H$ by an extension $\hat{H} \subset N(H)$. Thus the following corollary can be viewed as the classification of non simply connected homogeneous spaces of positive sectional curvature.

**Corollary.** Let $(K, H, N(H)/H)$ be one of the triples in Tables A or B. If $K/H$ is not a Wallach flag manifold, then all finite subgroups of $N(H)/H$ give rise to a finite extension $\hat{H} \subset H$ such that some positively curved metric descends to a $K$ invariant metric of $K/\hat{H}$. If $K/H$ is a Wallach flag manifold, then only the $\mathbb{Z}_2$-extension of $H$ allows for some positively curved metric to descend.

Using the description in [Wi1] of the $SU(3)$-equivariant principal bundle $SO(3) \to W_{7,1}^7 \to \mathbb{C}P^2$. Shankar [Sh1] was the first to observe that any finite subgroup $F \subset SO(3)$ can be realized as a fundamental group of a positively curved homogeneous space $W_{7,1}^7/F$.

Similarly one can use the $Sp(n+1)$ equivariant $S^3$-principal bundle $S^3 \to S^{4n+3} \to \mathbb{H}P^n$ to realize any finite subgroup $F \subset S^3$ as a fundamental group of a homogeneous space form $S^{4n+3}/F$.

By the corollary it is clear that any positively curved homogeneous spaces with a noncyclic fundamental group must be equivariantly diffeomorphic to one of these. We should mention that the full isometry group of the examples in Table A was determined in [Sh2] and various fundamental groups of locally homogeneous quotients have been exhibited [GS] although a classification is open.
Except for the Wallach flag manifolds, all the examples have positively curved metrics which are $\text{Ad}_N(\mathfrak{h})$-invariant and thus the Corollary is immediate for these examples. In the remaining cases one just has to use in addition that the fundamental group of an even dimensional positively curved manifold has at most two elements by the Synge Lemma. The rest of the paper is devoted to the proof of the theorem. The even dimensional case is treated in section 2 and the odd dimensional case in sections 3, 4 and 5. We explain the strategy in more detail at the end of the following section.

1. Obstructions to positive curvature

We will classify compact simply connected Riemannian homogeneous spaces $K/H$ with positive sectional curvature. We can thus assume that $K$ and $H$ are compact and connected, and that the normal subgroup common to both is at most finite. We fix a biinvariant metric $Q$ on the Lie algebra $\mathfrak{k}$ of $K$ and let $\mathfrak{p}$ denote the orthogonal complement of the subalgebra $\mathfrak{h}$ in $\mathfrak{k}$. The $K$-invariant metrics of $K/H$ are in one to one correspondence with positive definite selfadjoint endomorphisms $G: \mathfrak{p} \rightarrow \mathfrak{p}$ which commute with $\text{Ad}_H$. In fact, one can use $G$ to define a scalar product on $\mathfrak{p}$ by putting $\langle x, y \rangle = Q(Gx, y)$ for $x, y \in \mathfrak{p}$ and extend this equivariantly to $K/H$. We will implicitly assume that some $G$ has been chosen. The following criteria for finding planes with 0 or non-positive curvature is used as an obstruction in our classification.

**Lemma 1.1.**

a) If $x, y \in \mathfrak{p}$ are linearly independent eigenvectors of $G$ with $\langle x, y \rangle = 0$, then they generate a zero curvature plane in $K/H$.

b) Let $x \in \mathfrak{p}$ be an eigenvector to the smallest eigenvalue $\lambda$ of $G$ and assume we can find a linearly independent vector $z \in \mathfrak{p}$ with $\langle x, z \rangle = 0$. If we put $y = G^{-1}z$, then $x, y$ generate a plane of non-positive curvature in $K/H$.

**Proof.** One can express the formula for the sectional curvature of the homogeneous metric in terms of the biinvariant metric (see e.g. [Pü] or [GZ]) as follows:

$$\langle R(x, y)y, x \rangle = Q(B_-(x, y), [x, y]) - \frac{3}{4}Q([x, y]_\mathfrak{p}, [x, y]_\mathfrak{p})$$

$$+ Q(B_+(x, y), G^{-1}B_+(x, y)) - Q(B_+(x, x), G^{-1}B_+(y, y))$$

where $B_\pm(x, y) = \frac{1}{2}([x, Gy] \mp [Gx, y])$ and $[x, y]_\mathfrak{p}$ is the $Q$-orthogonal projection of $[x, y]$ to $\mathfrak{p}$. This clearly implies (a).

For part (b), observe that $B_\pm(x, y) \in \mathfrak{p}$ for all $x, y \in \mathfrak{p}$. Indeed, since $\text{ad}_v$ commutes with $G$ for $v \in \mathfrak{h}$, this well known fact (see e.g. [GZ], p.624 or [BB], p. 62) follows from

$$Q([x, G_y], v) = -Q(x, \text{ad}_v G_y) = -Q(x, G \text{ad}_v y) = -Q(Gx, [v, y]) = Q([Gx, y], v).$$

If $x, y, z$ are as specified, then $[x, Gy] = 0$ and hence $B_-(x, y) = \frac{1}{2}\lambda [x, y]$, $B_+(x, y) = -\frac{1}{2}\lambda [x, y]$ and $B_+(x, x) = 0$. Thus we also have $\langle x, y \rangle \in \mathfrak{p}$, and $x, y$ are linearly independent since $Gx = \lambda x$ and $Gy = z$ are. Altogether

$$\langle R(x, y)y, x \rangle = \frac{1}{2}\lambda Q([x, y], [x, y]) + \frac{3}{4}\lambda^2 Q([x, y], G^{-1}[x, y]) - \frac{3}{4}Q(G[x, y], [x, y])$$

$$\leq \left( \frac{1}{2} + \frac{3}{4} \right) \lambda \| [x, y] \|_Q^2 = 0$$

where we used the inequalities $Q(Gu, u) \geq \lambda \| u \|_Q^2$ and $Q(G^{-1}u, u) \leq 1/\lambda \| u \|_Q^2$ for all $u \in \mathfrak{p}$. □

The lemma can also be used to give a new proof for the following essential obstruction

**Lemma 1.2 (Berger).** If $K/H$ is a positively curved $n$-dimensional homogeneous space, then $\text{rank} K = \text{rank} H$ if $n$ is even, and $\text{rank} K = \text{rank} H + 1$ if $n$ is odd.
Proof. Consider first the special case of a trivial group $H$. Then $K$ is endowed with a left invariant positively curved metric. In our above notation, if $x \in p = \mathfrak{k}$ is an eigenvector to the minimal eigenvalue of $G$, then by Lemma 1.1 b) every vector $z \in \mathfrak{k}$ that commutes with $x$ is linearly dependent to $x$. Thus $\text{rank}(K) \leq 1$.

We now use the following well known fact, which will also be a crucial tool for us later on. Let $L \subset H \subset K$ and $C(L)_0$ the identity component of the centralizer of $L$ in $K$. Then $C(L)_0$ acts transitively on the component of the fixed point set $\text{Fix}(L)_0 \subset K/H$ through $eH$, as one easily sees by computing the tangent space of the orbit $C(L)_0 \cdot eH$. Thus $\text{Fix}(L)_0 = C(L)_0/C(L)_0 \cap H$ is a totally geodesic submanifold of $K/H$ and hence has positive curvature.

We now apply this to a maximal torus $T \subset H$. Then $C(T)_0 \cap H = T$ and hence $C(T)_0/T$ acts transitively and freely on $\text{Fix}(T)_0$. Thus $C(T)_0/T$ admits a positively curved left invariant metric and by the above special case $\text{rank}(C(T)_0/T) \leq 1$ or equivalently $\text{rank}(K) \leq \text{rank}(H) + 1$. Since $\dim(L) - \text{rank}(L)$ is an even number for any compact Lie group $L$, the lemma follows. \[\square\]

By [Wi2], if a group $K$ of the form $SO(n), SU(n), Sp(n)$ acts on a positively curved manifold in such a way that the principal isotropy group contains a $k \times k$ block of $K$ with $k \geq 3$, then the underlying manifold is covered by a manifold which is homotopy equivalent to a rank one symmetric space. In the homogeneous case one can strengthen it as follows, which will be our main tool in the classification since it allows one to proceed by induction on the dimension of the Lie group. Although this result follows from [Wi2] and the classification of homogeneous spaces homotopy equivalent to a rank one symmetric space, we give here a simple proof in the homogeneous case.

**Lemma 1.3 (Block Lemma).** Let $K \in \{SO(n), SU(n), Sp(n)\}$ and assume that a connected proper subgroup $H$ contains the lower $k \times k$-block of $K$ with $k \geq 3$ if $K \in \{SO(n), SU(n)\}$ and $k \geq 2$ if $K = Sp(n)$. If $K/H$ admits a $K$-invariant positively curved metric, then $H$ contains a group conjugate to a lower $(n-1) \times (n-1)$-block and $(K, H)$ is one of the pairs listed in Table B.

**Proof.** We may assume that $k$ is chosen maximal among all groups which are conjugate to $H$. We then let $L_k$ denote the lower $k \times k$-block, $N(L_k)$ its normalizer and let $q \subset \mathfrak{k}$ denote the orthogonal complement of $N(L_k)$. An element $v \in q$ is determined by its entries in the upper right $(n-k) \times k$ corner and we say $v$ is in the $i$-th row if the entries in the other rows are zero, $i = 1, \ldots, n-k$. Under the action of $L_k$ the space $q$ is decomposed into the rows into $(n-k)$-pairwise equivalent sub-representations of $L_k$. If $K = SO(n)$ or $K = SU(n)$ with $k \geq 3$, these irreducible representations are orthogonal resp. unitary, and if $K = Sp(n)$ with $k \geq 2$ they are quaternionic. This in turn implies that the action of the upper $(n-k) \times (n-k)$-block $U_{n-k}$ on $q$ induces a transitive action on the irreducible $L_k$-sub-representations.

We claim that $L_k$ is normal in $H$. Otherwise, the isotropy representation of $H/L_k$ contains a nontrivial irreducible sub-representation of $L_k$ which can be seen as a sub-representation of $q$. As explained, we may assume that it is given by the last row in $q$. But now it is easy to see that $H$ contains the lower $(k+1) \times (k+1)$-block in contradiction to our choice of $k$.

Thus $L_k$ is normal in $H$. If $k = n-1$, then clearly $(K, H)$ is one of the pairs listed in Table B. Suppose on the contrary $k \leq n-2$. We choose an irreducible sub-representation $V \subset q$ consisting of eigenvectors of the selfadjoint endomorphism $G$. As before $\text{Ad}_g V$ is given by the last row in $q$ for some $g \in U_{n-k}$. After conjugating $G$ and $H$ with $\text{Ad}_g$ we can therefore assume that the last row in $q$ consists of eigenvectors. Clearly we can iterate this argument and we may assume without loss of generality that each row of $q$ consists of eigenvectors of $G$. But now it is obvious that we can find commuting eigenvectors and by Lemma 1.1 a) this is a contradiction. \[\square\]
Remark. The subgroups $U(2) \subset SO(4)$ and $Sp(2) \subset SU(4)$ contain a $2 \times 2$ but no $3 \times 3$-block. Thus we can not allow $k = 2$ for $K \in \{SU(n), SO(n)\}$. The proof breaks down, since for a $2 \times 2$-block $L_2 \subset K$ the irreducible sub-representation in $q$ are complex if $K = SO(n)$ and quaternionic for $K = SU(n)$ and the upper $(n - 2) \times (n - 2)$-block no longer acts transitively on them.

The proof of the theorem in the next few sections will go by induction on the dimension of the Lie group, that is, at all times we will assume that the main theorem holds for all Lie groups with dimension strictly below $\dim(K)$. For any element $\iota \in H$ the fixed point set $\text{Fix}(\iota)$ is totally geodesic and hence positively curved. If $\text{Fix}(\iota_0)$ is the component of $\text{Fix}(\iota)$ containing the base point, then the id component of the centralizer $C(\iota_0)$ acts transitively on it, with stabilizer group $H^\iota := C(\iota_0) \cap H$ and thus $C(\iota_0)/H^\iota$ is positively curved. For simplicity of notation we let $\text{Fix}(\iota)$ stand for $\text{Fix}(\iota_0)$ and $C(\iota)$ for $C(\iota_0)$. Since $\iota$ is contained in a maximal torus of $H$ which in turn can be extended to a maximal torus of $K$, we have rank $C(\iota) = \text{rank}(K)$, rank $(H^\iota) = \text{rank}(H)$ and $\iota$ is a central element in the identity component of $H^\iota$. Hence the codimension of these fixed point sets $C(\iota)/H^\iota$ is always even, and we can do the induction in even and odd dimensions separately.

In all of the cases we will consider, $\text{Ad}_K$ is an involution, and hence $K/C(\iota)$ is a symmetric space with rank($C(\iota)$) $= \text{rank}(K)$. If $K$ is an exceptional Lie group, then the classification of symmetric spaces only allows the following possibilities for the pair $(K, C(\iota))$

- $G_2 : SO(4), \quad F_4 : (Sp(3) \times Sp(1))/\Delta Z_2, \quad \text{Spin}(9)$
- $E_6 : (\text{Spin}(10) \times S^1)/\Delta Z_4, \quad (SU(6) \times SU(2))/\Delta Z_2$
- $E_7 : (\text{Spin}(12) \times SU(2))/\Delta Z_2, \quad (E_6 \times S^1)/\Delta Z_4, \quad SU(8)/Z_2$
- $E_8 : (E_7 \times SU(2))/\Delta Z_2, \quad \text{Spin}(16)/Z_2 =: SO'(16)$

We can assume, by making the action ineffective if necessary, that the semisimple part of $K$ is simply connected. But when one $K = \text{Spin}(n)$, we will usually replace it by $SU(n)$, at the expense of possibly making $K/H$ not simply connected. We will use the following notational conventions

- If we write a Lie group $L$ as $L = L_1 \cdot L_2$ then $L_1$ and $L_2$ are normal subgroups generating $L$ and $L_1 \cap L_2$ is finite.
- If a group is identified as $SO(4)$ then $SU(2)_\pm$ will stand for the two simple normal subgroups.
- $G : p \to p = h^\perp$ will always stand for a positive definite selfadjoint endomorphism inducing a positively curved metric on the homogeneous space $K/H$, see first paragraph of this section. Both $H$ and $K$ are connected and the kernel of the action of $K$ on $K/H$ is finite.
- Sometimes we will just say that we found commuting eigenvectors of $G$. This is same as saying that the case under consideration can not occur, as it contradicts Lemma 1.1 a). Similarly, if a situation arises where our induction hypothesis can be used to show that some fixed point component cannot have positive sectional curvature, it should be understood that we can move on to the next case.

2. THE EVEN DIMENSIONAL CASE

Since rank $K = \text{rank}(H)$, all irreducible sub-representations of $H$ in $p$ are inequivalent, and hence the metric is diagonal, that is, every vector in an irreducible sub-representation of $H$ is an eigenvector of $G$. In addition, we can assume that $K$ is simple since otherwise $K/H$ is a product homogeneous space and every $K$ invariant metric is a product metric, contradicting positive curvature. Furthermore, all elements in $K$ are, up to conjugacy, also contained in $H$ and hence for each symmetric pair $(K, L)$ with rank($K$) $= \text{rank}(L)$ we can find an element $\iota$ in $H$ such that $C(\iota) \cong L$.
The only rank two subgroups of $K$ may assume that the involutions $H$ contains the classical diagonal torus and then $t \in H$ will be diagonal as well.

Since $C(t)/H^t$ is again an even dimensional space of positive curvature, only one factor in $C(t)$ can act effectively on $\text{Fix}(t)$, and the others must lie in $H^t$ and hence in $H$. Furthermore, if $C(t)/H^t$ is not a point, then the action of the remaining factor is listed in Table A or B, since we always assume that the main theorem holds for Lie groups of dimension strictly smaller than $\text{dim}(K)$. We point out though that low dimensional isomorphisms of Lie algebras sometimes give rise to less obvious presentations, e.g. $\mathbb{CP}^3 = \text{SO}(6)/U(3) = \text{SO}(5)/U(2)$.

We now discuss each simple Lie group separately. Due to the low dimensional isomorphisms $\text{Spin}(5) \cong \text{Sp}(2)$ and $\text{Spin}(6) \cong \text{SU}(4)$ we only need to consider $\text{Spin}(n)$ for $n \geq 7$, and in that case replace it by $\text{SO}(n)$ for simplicity. The aim is to confirm that $(K, H)$ is listed in Table A or B.

2.1. $K = \text{SU}(3)$. The only rank two subgroups of $\text{SU}(3)$ are $U(2)$ and $T^2$, and both pairs correspond to listed examples.

2.2. $K = \text{SU}(4)$. In this case, the fixed point set $\text{Fix}(t) = \text{S}(U(2)U(2))/H^t$ has positive curvature, for $t = \text{diag}(-1, -1, 1, 1)$, and thus $H^t$, and hence also $H$, contains an $\text{SU}(2)$-block, say the upper $2 \times 2$-block.

We next look at the involution $t_2 = \text{diag}(1, -1, -1, 1)$ and repeat the argument. It shows that $H$ also contains either the middle $\text{SU}(2)$-block or the $(1, 4)$-$\text{SU}(2)$-block. Neither of these blocks commutes with the upper $\text{SU}(2)$-block and in fact the two blocks generate an $\text{SU}(3)$-block and we are done by the Block Lemma.

2.3. $K = \text{SU}(k)$ ($k \geq 5$). In this case we look at the fixed point set of $t = \text{diag}(\zeta, \ldots, \zeta, -\zeta) \in H$ where $\zeta \in S^1$ is a primitive $2k$-th root of unity. Thus $C(t) = U(k - 1)$ and the fixed point component $U(k - 1)/H^t$ admits positive curvature. Since $k - 1 \geq 4$, it follows that $H$ contains a $(k - 2) \geq 3$ block, and we are done by the Block Lemma.

2.4. $K = \text{Sp}(2)$. We may assume $t = \text{diag}(-1, 1, 1) \in H$. Since $\text{Sp}(1) \times \text{Sp}(1)/H^t$ admits positive curvature, $H$ contains an $\text{Sp}(1)$ block. Thus either $H = \text{Sp}(1) \cdot \text{Sp}(1)$ or $H = \text{Sp}(1) \cdot S^1$ and both quotients are listed in Table B.

2.5. $K = \text{Sp}(3)$. We may assume that the involutions $t_1 = \text{diag}(-1, 1, 1), t_2 = \text{diag}(1, -1, 1)$ and $t_3 = \text{diag}(1, 1, -1)$ are in $H$ and that $H$ contains no $2 \times 2$-block. Then $\text{Fix}(t_h) = \text{Sp}(2)\text{Sp}(1)/H^{h_h}$ and since $H$ does not contain the $\text{Sp}(2)$, it must contain the $\text{Sp}(1)$-block – given by the $S^3$ in the $h$-th diagonal entry. Hence $\{\text{diag}(a, b, c) \mid a, b, c \in S^3\} \subset H$. Since $H$ contains no $2 \times 2$-block equality must hold and we are left with the 12 dimensional Wallach flag manifold.

2.6. $K = \text{Sp}(k)$ ($k \geq 4$). We may assume that $t = \text{diag}(-1, -1, 1, \ldots, 1) \in H$ and hence $\text{Fix}(t) = \text{Sp}(2) \cdot \text{Sp}(k - 2)/H^t$. Thus $H$ contains either the upper $2 \times 2$ block or the lower $(k - 2) \times (k - 2)$-block. In either case the result follows from the Block Lemma.

2.7. $K = \text{SO}(k)$ ($k \geq 7$). We may assume $t = \text{diag}(-1, -1, -1, -1, 1, \ldots, 1) \in H$ and hence $\text{Fix}(t) = \text{SO}(4) \cdot \text{SO}(k - 4)/H^t$ admits positive curvature. The group $H^t$ must contain all but one of the connected simple normal subgroups of $\text{SO}(4) \cdot \text{SO}(k - 4)$. This implies that $H$ contains either the upper $4 \times 4$-block or the lower $(k - 4) \times (k - 4)$-block and we are done by the Block Lemma.
2.8. \(K = G_2\). For any involution \(i \in H\), we have \(\text{Fix}(i) = \text{SO}(4)/H'\), which implies that \(H'\) contains at least a group isomorphic to \(U(2) \subset \text{SO}(4)\). We claim that \(H = U(2)\) cannot hold. In fact, otherwise we could choose \(i\) as a non-central involution in \(U(2)\) and would get \(H' = T^2\), but \(\text{SO}(4)/T^2\) does not admit positive curvature. Thus \(H\) is strictly bigger than \(U(2)\). The only connected proper subgroups of \(G_2\) satisfying this are \(\text{SU}(3)\) and \(\text{SO}(4)\). In the former case, \(G_2/\text{SU}(3) \cong S^6\) is listed in Table B while the latter case is not possible as \(G_2/H\) would be isometric to the rank 2 symmetric space \(G_2/\text{SO}(4)\).

2.9. \(K = F_4\). Choose an involution \(i \in H\) whose centralizer in \(F_4\) is given by \(\text{Spin}(9)\). Since \(\text{Fix}(i) = \text{Spin}(9)/H'\) has positive curvature, \(H\) contains \(\text{Spin}(8)\). The only proper connected subgroups in \(F_4\) satisfying this are \(\text{Spin}(8)\) and \(\text{Spin}(9)\) and both correspond to listed quotients.

2.10. \(K = E_i, i = 6, 7, 8\). We choose an element \(i \in H\) whose centralizer \(C(i)\) is given by \(S^1\)-\(\text{Spin}(10)\) if \(i = 6\), \(S^1 \cdot E_6\) if \(i = 7\) and \(\text{SO}'(16)\) if \(i = 8\). By induction we can use the Tables A and B in the introduction to see that \(C(i)\) can not act transitively by isometries on a positively curved manifold of positive even dimension. Hence \(C(i) = H' \subset H\) and equality must hold since \(C(i)\) is maximal – a contradiction as \(K/C(i)\) is a higher rank symmetric space.

3. \(K\) not semisimple

In the remaining three sections we assume that \(K/H\) is an almost effective representation of an odd-dimensional homogeneous space of positive sectional curvature and in this section we treat the case of a non-semisimple compact group \(K\). Since rank(\(K\)) = rank(\(H\)) + 1, the center of \(K\) can be at most one dimensional. After passing to a finite cover we can assume \(K = S^1 \times K_2\) with \(K_2\) semisimple. We let \(\text{pr}_2(\text{H})\) denote the projection of \(\text{H}\) to the second factor. Since \(K/H\) has finite fundamental group, the projection of \(H\) to the first factor is surjective.

If we put \(H_2 = K_2 \cap H\), then \(H = \Delta S^1 \cdot H_2\). Since the projection to the first factor is surjective, \(K_2\) acts transitively on \(K/H\) with stabilizer \(H_2\) and by induction on the dimension of the Lie group \((K_2, H_2)\) is up to a finite covering one of the pairs listed in Table A or B. The group \(\text{pr}_2(\text{H})\) is contained in the normalizer of \(H_2\) in \(K_2\) and thus \(N(H_2)/H_2\) is at least one dimensional. Combining this with the fact that \(K_2\) is semisimple we deduce that \((K_2, H_2)\) is given by \((\text{SU}(n), \text{SU}(n-1))\), \((\text{Sp}(n), \text{Sp}(n-1))\) or \((\text{SU}(3), \text{diag}(z^p, z^q, z^{p+q}))\) (with \(p \geq q \geq 1\) and \(\gcd(p,q) = 1\)). Either case the corresponding \(S^1\) extension is also listed in Tables A and B and thus we are done.

4. \(K\) semisimple but not simple

We assume in this section \(K = K_1 \times K_2\) is a simply connected product group with semisimple factors of positive rank. Notice that rank(\(K_i\)) = rank(\(H_i\)) \leq rank(\(K\)) = rank(\(H\)) = 1 holds for \(H_i = K_i \cap H, i = 1, 2\). We distinguish among three cases.

4.1. \(H_1\) and \(H_2\) are finite. Then rank(\(K_i\)) \leq rank(\(H_i\)) + 1 = 1 and thus \(K = S^3 \times S^3\). If \(H\) is three dimensional then it is necessarily given by \(\Delta S^3\) and \(K/H \cong S^3\) is in our list. Otherwise \(H\) is a circle and we can assume \(H = \{(z^p, z^q) \mid z \in S^1\}\) with \(p \geq q \geq 1\) and \(\gcd(p,q) = 1\). We want to rule out these potential examples by finding commuting eigenvectors. The tangent space \(p\) splits into a trivial 1-dimensional module and a 4-dimensional module spanned by \((j, 0), (k, 0), (0, j), (0, k)\) on which \(H\) acts as a rotation on the span of the first two and the last two vectors. If \(p \neq q\), the subrepresentations are inequivalent and thus \(G\)-invariant. Therefore \((j, 0)\) and \((0, j)\) are commuting eigenvectors. If \(p = q\) we can assume that one eigenvector is given by \(e_1 = (\alpha j, \beta je^{i\psi})\) for some \(\alpha, \beta, \psi \in \mathbb{R}\) with \(\alpha^2 + \beta^2 = 1\). A second eigenvector to the same eigenvalue is then obtained by the action of \(H\) to be \(e_2 = (ak, \beta ke^{i\psi})\). Any vector in the four dimensional modul which is \(Q\)-orthogonal to both, must thus be an eigenvector as well. Hence \(e_3 = (-\beta j, \alpha je^{i\psi})\) is an eigenvector.
and it clearly commutes with $e_1$. Here we used indirectly that we can choose the biinvariant metric $Q$ such that both factors are weighted equally.

4.2. $H_1$ is finite but $H_2$ is not. Then $\text{rank}(K_1) = 1$ and thus $K = S^3 \times K_2$.

We start with the case where $H$ projects surjectively to the first factor. Then $H = \Delta S^3 \cdot H_2$ and the factor $K_2$ acts transitively on the homogenous space $K/H$ with stabilizer $H_2$. By induction on the dimension of the Lie group, the pair $(K_2, H_2)$ is up to a finite covering listed in Tables A or B. Since $\text{pr}_2(H)$ is contained in the normalizer of $H_2$ it follows that $N(H_2)/H_2$ is three dimensional. Therefore the pair $(K_2, H_2)$ is given by $(\text{SU}(3), \text{diag}(z, z, z^2))$ or $(\text{Sp}(n), \text{Sp}(n-1))$. But then $(K, H)$ is (up to finite kernel) either $(\text{SU}(3) \times \text{SO}(3), U(2))$ or $(\text{Sp}(n) \times \text{Sp}(1), \text{Sp}(n) \Delta \text{Sp}(1))$ and both are listed in Tables A and B.

The projection of $H$ to the $S^3$ factor can not be trivial as otherwise $H = 1 \times H_2$ would be a product subgroup of $S^3 \times K_2$ and every invariant metric of $K/H$ would be a product metric.

It remains to consider the subcase where the projection of $H$ to the $S^3$ factor is given by an $S^1$. Let $N(H_2)$ denote the normalizer of $H_2$ in $K_2$. If $N(H_2)/H_2$ is three dimensional then a fixed point component of $H_2$ is locally isometric to $(S^3 \times S^3)/S^1$, which is impossible as we saw in 4.1.

Otherwise, we have $\dim(N(H_2)/H_2) \leq 1$. This implies that the two dimensional irreducible representation of $H$ in the first factor is not equivalent to any other sub-representation of $H$ in $p$ since no other nontrivial sub-representation has $H_2$ in its kernel. Thus the two dimensional sub-representation in the first factor consists of eigenvectors and it is now easy to find commuting eigenvectors of $G$.

4.3. Both $H_1$ and $H_2$ are infinite. Then there is a nontrivial irreducible sub-representation which does not contain $H_1$ in its kernel. Since any such sub-representation is tangent to the first factor there are eigenvectors in the first factor. Similarly there are also eigenvectors in the second factor and thus we found commuting eigenvectors.

5. The odd dimensional case with $K$ Simple

The proof is again by induction on the dimension of the group. Again we frequently use that the centralizer $C(\iota)$ of an element $\iota \in H$ acts transitively on an odd-dimensional fixed point component of $\iota$ and by induction this action is, up to possibly a larger kernel, (locally) given by one listed in Tables A and B in the introduction. We point out though that low dimensional isomorphisms of Lie algebras sometimes give rise to less obvious presentations:

\[
\mathbb{R}P^7 = \text{SO}(5)/\text{SU}(2)_{\pm} = \text{SO}(6)/\text{SU}(3) = \text{SO}(7)/G_2 = \text{SO}(8)/\text{Spin}(7)
\]
\[
\mathbb{R}P^7 = \text{SO}(5)/\text{SU}(2)/\text{SU}(2)_{-} \cdot \Delta \text{SU}(2)_{+}, S^5 = \text{SU}(4)/\text{Sp}(2), \quad \mathbb{R}P^{15} = \text{SO}(9)/\text{Spin}(7).
\]

As explained, for $\iota \in H$, the group $H$ is either equal to $H' = C(\iota) \cap H$ or an equal rank enlargement thereof. The latter are rather rare, as follows from the table in [Wo, p. 281]. For example, up to covers the only equal rank enlargements of simple Lie groups are $\text{SO}(2n) \subset \text{SO}(2n+1)$, $\text{SU}(3) \subset G_2$, $\text{Spin}(9) \subset F_4$, $\text{SU}(8)/\mathbb{Z}_2 \subset E_7$, $\text{SU}(9)/\mathbb{Z}_3 \subset E_8$ and $\text{Spin}(16)/\mathbb{Z}_2 \subset E_8$. The group $S^5 \times S^3$ has only $\text{Sp}(2)$ as equal rank enlargement whereas $\text{SO}(4)$ has $\text{SO}(5)$ and $G_2$.

We go through the list of simple Lie groups. By passing to a $\mathbb{Z}_2$ quotient if necessary we again can deal with the group $\text{SO}(k)$ rather than $\text{Spin}(k)$ as long as we allow fundamental group $\mathbb{Z}_2$ for $K/H$. As in the even dimensional case we only need to consider this for $k \geq 7$.

5.1. $K = \text{SU}(3)$. If $H = \text{SO}(3)$, then $K/H$ is isometric to a symmetric space of rank 2, and hence does not have positive curvature, and if $H = \text{SU}(2)$, it is a sphere. Otherwise, $H$ is one dimensional and we may assume $H = \text{diag}(z^p, z^q, z^{p+q})$ with $p \geq q \geq 0$ and $\gcd(p, q) = 1$. Then $K/H$ is an Aloff Wallach space, which has positive curvature unless $(p, q) = (1, 0)$. In the latter case we choose the
involution \( \iota = \text{diag}(-1, 1, -1) \in H \) whose fixed point set \( \text{Fix}(\iota) = U(2)/H = (S^2 \times S^1)/\Delta \mathbb{Z}_2 \) cannot have positive curvature.

5.2. \( K = SU(4) \). There exists an involution \( \iota \in H \) which is not central since \( \text{rank}(H) = 2 \). In this case, \( \text{Fix}(\iota) = S(U(2)U(2))/H^\iota \), which can only have positive curvature if \( H \) contains \( \Delta SU(2) \) or an \( SU(2) \)-block. In the first case, \( K/H \) is effectively a quotient of \( SO(6) \). The image of \( S(U(2)U(2)) \) in \( SO(6) = SU(2)SO(4) \), and hence the image of \( \Delta SU(2) \) is a \( 3 \times 3 \) block in \( SO(6) \), and we are done by the Block Lemma.

If \( H \) contains a block (say lower) \( SU(2) \), there are 4 possible enlargements of rank 2. If \( H \) is simple, it must be \( SU(3) \) or \( Sp(2) \), since \( SU(4) \) does not contain a \( G_2 \). But then \( K/H = S^7 \) or \( S^5 \) is in our list. A third possibility is that \( SU \) contains up to conjugation a \( 3 \times 3 \) block and we are done by the Block Lemma.

The final possibility is \( H = SU(2) \cdot \text{diag}(z^{2p}, z^{2q}, z^{p+q}, z^{p+q}) \) for some \( p, q \in \mathbb{Z} \) with \( \gcd(p, q) = 1 \) and this can be ruled out as follows. If \( |p| \neq |q| \), then the two rows in the orthogonal complement \( q \) of \( S(U(2)U(2)) \) correspond to inequivalent representations and hence are contained in eigenspaces of \( G \) which clearly yields commuting eigenvectors. If \( p = q \) the representation of \( H \) in \( q \) decomposes into two equivalent complex representations and the normalizer of \( H \) contains the upper \( 2 \times 2 \) block. We can argue as in the proof of the Block Lemma to find commuting eigenvectors. If \( p = -q \), then the involution \( \text{diag}(1, 1, -1, -1) \in H \) has a three dimensional fixed point component \( S(U(2)U(2))/H = (S^2 \times S^1)/\Delta \mathbb{Z}_2 \) with infinite fundamental group.

5.3. \( K = SU(5) \). Let \( F \cong \mathbb{Z}_2^3 \) denote the group of diagonal matrices in \( SU(5) \) with eigenvalues \( \pm 1 \). Since the \( 2 \) dimension can assume that the three dimensional torus in \( H \) is diagonal, there exists an index \( 2 \) subgroup \( E \) of \( F \) contained in \( H \). We claim that one element in \( E \) has an eigenvalue \( -1 \) with multiplicity \( 4 \). Suppose not. If \( \iota_1, \iota_2 \in F \) are two elements both of which have the eigenvalue \( -1 \) with multiplicity \( 4 \), then it would follow \( \iota_1 \cdot \iota_2 \in E \). But these products generate the whole group \( F \) a contradiction.

Therefore without loss of generality \( \iota = \text{diag}(-1, -1, -1, -1, 1) \in H \). By induction \( \text{Fix}(\iota) = U(4)/H^\iota \), must be one of \( U(4)/U(3), U(4)/SU(4) \) or \( SU(4)/Sp(2) \). In the first two cases, \( H \) contains a \( 3 \times 3 \) block, and we are done. In the last case, \( H \) contains \( Sp(2) \cdot S^1 \), which gives rise to the positively curved Berger space \( SU(5)/Sp(2) \cdot S^1 \).

5.4. \( K = SU(k), k \geq 6 \). We can assume that the maximal diagonal torus of \( H \) has at least one \( 1 \) dimensional intersection with the maximal torus of \( \Delta SU(3) \subset SU(3)^2 \) contained in the upper \( 6 \times 6 \) block of \( SU(k) \). Clearly any involution \( \iota \) in this intersection has a complex eigenvalue \( -1 \) with multiplicity \( 4 \). Then \( \text{Fix}(\iota) = S(U(4) \cdot U(k-4))/H^\iota \).

If \( k \geq 7 \), then \( H^\iota \) either contains the upper \( 4 \times 4 \) or the lower \( (k-4) \times (k-4) \) block and we are done.

If \( k = 6 \) then the stabilizer group of the action of \( SU(4) \) on \( \text{Fix}(\iota) \) is \( Sp(2) \) unless it contains an \( SU(3) \)-block. Thus we may assume \( Sp(2)SU(2) \cdot S^1 \subset H \) with \( S^1 = \text{diag}(z, z, z, z, z^2, z^2) \). This in turn implies that \( \iota_2 = \text{diag}(i, -i, i, -i, i, -i) \in Sp(2)SU(2) \subset H \). The centralizer \( C(\iota_2) \) is isomorphic to \( S(U(3)U(3)) \) and hence \( \text{Fix}(\iota_2) = S(U(3)U(3))/H^\iota \) has positive curvature. By induction \( H \) contains up to conjugation a \( 3 \times 3 \) block and we are done by the Block Lemma.

5.5. \( K = Sp(2) \). There are three \( 3 \)-dimensional subgroups of \( Sp(2) \). One quotient is a sphere \( S^7 = Sp(2)/Sp(1) \), the second the Berger space \( Sp(2)/Sp(1)_{\text{max}} \) with positive curvature, and the third the Stiefel manifold \( Sp(2)/\Delta Sp(1) = SO(5)/SO(3) \) which contains a \( 3 \times 3 \) block, and thus is ruled out by the Block Lemma.

It remains to consider \( H = \text{diag}(z^p, z^q) \) with \( p \geq q \geq 0 \) and \( \gcd(p, q) = 1 \). Then the weights of the adjoint action of \( H \) on \( p \) are 0, 2p, 2q, p - q, p + q. If they are all distinct, the metric \( G \) is diagonal,
and there are two commuting eigenvectors. If \((p, q) = (1, 0)\), then \(\text{Fix}(\iota) = \text{Sp}(1)\text{Sp}(1)/S^1 \times 1\) cannot have positive curvature, where \(\iota\) is the involution in \(H\).

This leaves us with 2 exceptional cases. If \((p, q) = (1, 1)\), then \(\text{Sp}(2)/\Delta S^1 = \text{SO}(5)/\text{SO}(2)\) is the Stiefel manifold where we can think of \(\text{SO}(2)\) as the lower \(2 \times 2\) block. In this case \(p = p_0 \oplus p_1\) where \(H\) acts trivially on the 3-dimensional module \(p_0\) (upper \(3 \times 3\)-block), and as the direct sum of 3 equivalent 2-dimensional representations on \(p_1\). We use Lemma 1.1 (b) to find an obstruction. If an eigenvector corresponding to the smallest eigenvalue of \(G\) lies in \(p_0\), then it has rank 2 in \(\text{so}(5)\) and there is a vector in \(p_1\) that commutes with it. If the eigenvector lies in \(p_1\), we can use the fact that \(\text{SO}(5)/\text{SO}(3)\text{SO}(2)\) is a symmetric space of rank 2 to find a linearly independent vector in \(p_1\) that commutes with it. In either case Lemma 1.1 (b) implies that \(\text{Sp}(2)/H\) does not have positive curvature.

Ruling out the remaining case of \((p, q) = (3, 1)\) we postpone to the end since it is the only case that requires a more detailed argument, see section 5.14.

5.6. \(K = \text{Sp}(3)\). If \(\iota \in H\) is an involution which is not central, then \(\text{Fix}(\iota) = \text{Sp}(2)\text{Sp}(1)/H^\iota\) and by induction there are only 4 odd dimensional quotients which have positive curvature, corresponding to \(H^\iota = \text{Sp}(2)\), \(\text{Sp}(1)\Delta S^1\), \(\text{Sp}(1)\text{Sp}(1)\) or \(\text{Sp}(1)_{\text{max}}\text{Sp}(1)\). By the Block Lemma we may assume that \(H\) does not contain a \(2 \times 2\) block and thus \(H = H^\iota\).

If \(H^\iota\) is given by \(\text{Sp}(1)\Delta S^1 = \text{diag}(q, r, r)\) or \(\text{Sp}(1)\text{Sp}(1) = \text{diag}(1, q, r)\) with \(q, r \in \text{Sp}(1)\), then we can choose a second involution \(\iota_2 = \text{diag}(1, -1, -1) \in H\) with fixed point set \(\text{Sp}(1)\text{Sp}(2)/H = \text{Sp}(2)/\Delta S^1\) in the first case, and \(\text{Sp}(1)\text{Sp}(2)/H = \text{Sp}(1) \times (\text{Sp}(2)/\text{Sp}(1)\text{Sp}(1))\) in the second case. Neither one admits positive curvature.

Thus we are left with the case \(H^\iota = H = \text{Sp}(1)_{\text{max}}\text{Sp}(1) \subset \text{Sp}(2)\text{Sp}(1)\). Then \(p = p_1 \oplus p_2\) where \(p_1\) is the irreducible sub-representation of \(H\) given by the orthogonal complement of \(\text{Sp}(1)_{\text{max}}\) in the upper \(\text{sp}(2)\)-block and \(p_2\) is the irreducible inequivalent sub-representation given by \(\text{sp}(2) \oplus \text{sp}(1)^\perp\). Clearly \(p_1\) is contained in an eigenspace of \(G\). We may assume that a maximal torus of \(H\) is given by \(\{\text{diag}(z^3, z, \zeta) \mid z, \zeta \in S^1\}\) (see e.g. [Be], p.237). The circle \(\text{diag}(z^3, z, 1)\) acts on the Lie algebra of \(\text{Sp}(1)_{\text{max}}\) with weight 2 and thus \(x = \text{diag}(j, 0, 0) \in p_1\), as \(x\) lies in a 2-dimensional sub-representation of the circle with weight 6. Clearly we can find a commuting eigenvector in \(p_2\).

5.7. \(K = \text{Sp}(k), k \geq 4\). Fixed point groups of non central involutions are of the form \(\text{Sp}(r)\text{Sp}(s)\) with \(r + s = k\) and \(r \geq s\). Thus either \(r \geq 3\) or \(r = s = 2\). In either case, it follows from our induction hypothesis that \(H^\iota \subset H\) contains a \(2 \times 2\) block and we are done.

5.8. \(K = \text{SO}(k), k \geq 7\). We may assume that the maximal torus of \(H\) has at least one dimensional intersection with \(\text{SU}(3) \subset \text{U}(3)\) contained in the upper the \(6 \times 6\)-block. Any involution \(\iota\) in this intersection has the eigenvalue \(-1\) with real multiplicity four. Hence without loss of generality \(\iota = \text{diag}(-1, -1, -1, -1, 1, \ldots, 1) \in H\).

A fixed point component is given by \(\text{SO}(4)\text{SO}(k-4)/H^\iota\). If \(k \geq 10\), then by induction \(H^\iota\) either contains the upper \(4 \times 4\)-block or the lower \((k-4) \times (k-4)\) block and we are done.

If \(k = 7\), then \(H^\iota\) contains a \(3 \times 3\)-block unless \(H^\iota \subset \text{SU}(2)\cdot \Delta \text{SU}(2) \cong \text{SO}(4)\) with \(\Delta \text{SU}(2) \subset \text{SU}(2)\cdot \text{SO}(3)\). If \(H = H^\iota\) then we consider another involution \(\iota_2 = \text{diag}(-1, -1, 1, -1, 1, -1, 1) \in H\) coming from \(\text{diag}(i, -i), \text{diag}(i, -i) \in \text{SU}(2)\cdot \Delta \text{SU}(2)\) with fixed point set \(\text{SO}(4)\text{SO}(3)/H^{\iota_2}\) which cannot have positive curvature since \((H^{\iota_2})_0 = \text{U}(1)\text{U}(1)\). Thus \(H \neq H^\iota\) and \(H\) is simple. Since \(\text{SO}(5)\) only embeds as a \(5 \times 5\) block into \(\text{SO}(7)\), it necessarily follows that \(H = \text{G}_2\) and \(\text{SO}(7)/\text{G}_2 \cong \mathbb{R}P^7\) is two fold covered by a listed example.

If \(k = 8\), then at least two of the four normal connected simple subgroups of \(\text{SO}(4)\text{SO}(4)\) are in \(H^\iota\). If they form a \(4 \times 4\) block then we are done by the Block Lemma. Otherwise, we can choose a suitable complex structure such that \(H^\iota\) contains the subgroup \(L\) given as the upper and lower \(2 \times 2\) block of \(\text{SU}(4) \subset \text{SO}(8)\). If we choose an automorphism of the Lie algebra \(\text{so}(8)\) that moves the
subalgebra $\mathfrak{su}(4)$ into a $6 \times 6$ block $\mathfrak{so}(6)$, then the image of the Lie algebra of $L$ will be a $4 \times 4$ block (see first paragraph of section 5.2). By the Block Lemma $H \cong \text{Spin}(7)$ and $\text{SO}(8)/\text{Spin}(7) \cong \mathbb{RP}^7$ is two fold covered by a listed example.

It remains to consider $k = 9$. Then $\text{Fix}(\iota) = \text{SO}(5)\text{SO}(4)/H^\iota$. By the Block Lemma, we can assume that both $\text{SO}(5)$ and one of the simple factors in $\text{SO}(4)$ must act nontrivially on $\text{Fix}(\iota)$. This leaves only the possibility that effectively

$$\text{Fix}(\iota) = \mathbb{RP}^7 = \text{SO}(5)\text{SU}(2)_+ / \text{SU}(2)_- \cdot \Delta \text{SU}(2)_+$$

Thus $\Delta \text{SU}(2)_+ \subset H$ which implies that $H$ contains another involution $\iota_2$ with eigenvalue $-1$ of multiplicity $8$ and hence has fixed point component $\text{SO}(8)/H^\iota_2$. Thus either $H$ contains a $7 \times 7$ block and we are done, or $\text{Fix}(\iota_2) = \mathbb{RP}^7 = \text{SO}(8)/\text{Spin}(7)$. But then $H = \text{Spin}(7)$ and $K/H = \mathbb{RP}^{15}$ is two fold covered by a listed example.

5.9. $K = G_2$. For every involution $\iota \in H$, the fixed point set is $\text{Fix}(\iota) = \text{SO}(4)/H^\iota$. Since $\iota$ is contained in the center of $H$, we deduce that $H^\iota \not\cong \text{SO}(3)$ and thus $H^\iota = H$ is a normal subgroup of $\text{SO}(4)$. We let $p_0 \subset p$ denote the 3-dimensional trivial sub-representation of $H$ corresponding to the dual normal subgroup of $\text{SO}(4)$. The orthogonal complement $q := (p_0)^\perp \cap p$ corresponds to the tangent space of the rank 2 symmetric space $G_2/\text{SO}(4)$. Thus $G_{1q}$ can not be a multiple of the identity because otherwise we could find commuting eigenvectors. This implies that the representation of $H \cong \text{SU}(2)$ on the 8-dimensional space $q$ is reducible. Since $\text{Ad}_{1q} = -\text{id}$ there are no trivial or three dimensional sub-representations and it must be given as the sum of two 4-dimensional sub-representations.

Altogether, $G_{1q}$ has two four dimensional eigenspaces $p_1$ and $p_2$ corresponding to distinct eigenvalues $\lambda_1$ and $\lambda_2$. If $X \in p_1 \setminus \{0\}$, then $\text{ad}_X$ moves $p_2$ to $p_0 \oplus \mathfrak{h}$ as $G_2/\text{SO}(4)$ is a symmetric space. Since $p_0$ is three dimensional, $[X,Y] \in \mathfrak{h}$ for some $Y \in p_2 \setminus \{0\}$. Now $B_+(X,Y) = [GX,Y] - [X,GY] = (\lambda_1 - \lambda_2)[X,Y] \in \mathfrak{p}$ (see proof of Lemma 1.1) gives $[X,Y] = 0$ and we found two commuting eigenvectors.

5.10. $K = F_4$. In this case $C(\iota)$ is either $\text{Sp}(3) \cdot \text{Sp}(1)$ or $\text{Spin}(9)$. Since $\text{rank}(H) = 3$, one of its involutions lies in $Z_2 \oplus Z_2$, the center of $\text{Spin}(8) \subset \text{Spin}(9)$. Since $\text{Sp}(3)\text{Sp}(1)$ does not contain a $\text{Spin}(8)$, the fixed point set is $\text{Fix}(\iota) = \text{Spin}(9)/H^\iota$. Thus $H^\iota = \text{Spin}(7)$ since $H^\iota$ has rank 3, which in turn implies that $H = \text{Spin}(7)$ since it has no equal rank enlargement.

Choose an involution $\iota_2 \in \text{Spin}(7)$ with $H^\iota_2 = \text{Spin}(4)\text{Spin}(3)$. Again $C(\iota_2) \cong \text{Sp}(3) \cdot \text{Sp}(1)$ or $\text{Spin}(9)$ and by induction $C(\iota_2)/H^\iota_2$ does not have positive curvature.

5.11. $K = E_6$. Here $C(\iota)$ is either $\text{SU}(6) \cdot \text{Sp}(1)$ or $(\text{Spin}(10) \times S^1)/\Delta Z_4$. As in the previous case, we can choose an involution $\iota \in Z(\text{Spin}(8)) \cap H$ with $\text{Fix}(\iota) = \text{Spin}(10) \cdot S^1/H^\iota$. Thus either $\text{Spin}(9) \cdot S^1 \subset H$ or $\text{Spin}(10) \subset H$. If $H$ is a strict equal rank enlargements $H^\iota$, then it is isomorphic to $\text{Sp}(1) \cdot \text{Spin}(9)$ or $\text{Spin}(11)$ and the central element $\iota \in \text{Spin}(9)$ of $H^\iota$ would remain central in $H$, which is impossible as these groups are not in $C(\iota)$.

If $H = \text{Spin}(9) \cdot S^1$ we can choose another involution $\iota_2 \in Z(\text{Spin}(8)) \cap H$ with $H^\iota_2 = \text{Spin}(8) \cdot S^1$. But then $\text{Fix}(\iota_2) = \text{Spin}(10) \cdot S^1/\text{Spin}(8) \cdot S^1$ which does not admit positive curvature.

In the second case $H = \text{Spin}(10)$, we can choose an involution $\iota_2 \in \text{SU}(2) \subset \text{Spin}(4) \subset \text{Spin}(10)$ with $H^\iota_2 = \text{Spin}(4)\text{Spin}(6)$ and as before $C(\iota_2) \cong \text{Spin}(10) \cdot S^1$ or $\text{SU}(6) \cdot \text{Sp}(1)$ but in either case $C(\iota_2)/H^\iota_2$ can not have positive curvature by our induction hypothesis.

5.12. $K = E_7$. We let $\iota$ denote an involution in $H$ which is not central in $E_7$. The potential candidates for $C(\iota)$ are $E_6 \cdot S^1$, $(\text{Spin}(12) \times \text{Sp}(1))/\Delta Z_2$ or $\text{SU}(8)/Z_2$. Notice that $\iota$ must be contained in the center of $C(\iota)$. The center of $E_6 \cdot S^1$ and $\text{SU}(8)/Z_2$ only contains one involution and this must be contained in the center of $E_7$ which is $Z_2$ — a contradiction.
Thus \( C(\iota) = (\text{Spin}(12) \times \text{Sp}(1))/\Delta \mathbb{Z}_2 \). Then \( H' = \text{Spin}(11) \cdot \text{Sp}(1) = H \) or \( H' = \text{Spin}(12) = H \). But then we can choose another involution \( \iota_2 \in Z(\text{Spin}(4)) \subset \text{Spin}(11) \cap H \) with \( H'^2 = \text{Spin}(4) \text{Spin}(7) \text{Sp}(1) \) or \( \text{Spin}(4) \text{Spin}(8) \). As before we must have \( C(\iota_2) \cong \text{Spin}(12) \cdot \text{Sp}(1) \) and the fixed point set does not have positive curvature.

5.13. \( K = E_8 \). Here \( C(\iota) \) is either \( E_7 \cdot \text{Sp}(1) \) or \( SO'(16) \). In the former case, we would get \( H = E_7 \) and there is a Riemannian submersion from \( E_8/E_7 \) to the higher rank symmetric space \( E_8/E_7 \cdot \text{Sp}(1) \) as the isotropy representation of \( E_8/E_7 \cdot \text{Sp}(1) \) remains irreducible when restricted to \( E_7 \rightarrow H \) a contradiction.

Thus \( \text{Fix}(\iota) = SO'(16)/H' \) and hence \( H' = \text{Spin}(15) = H \). We can now choose another involution \( \iota_2 \in Z(\text{Spin}(12)) \subset H \) with \( H'^2 = \text{Spin}(12) \text{Spin}(3) \). As before we must have \( C(\iota_2) \cong SO'(16) \) but then \( C(\iota_2)/H'^2 \) does not have positive curvature.

5.14. \( K = \text{Sp}(2) \) and \( H = \text{diag}(e^{i\theta}, e^{3i\theta}) \). Finally, we discuss the example left out in Section 5.5.

Claim. Without loss of generality \( G \) commutes with \( \text{Ad}_a \) where \( a = \text{diag}(j, j) \).

We first want to explain why it is enough to prove the claim. By the claim it suffices to consider \( \text{Ad}_H \)-invariant metrics with

\[
\hat{H} := H \cup aH \cong \text{Pin}(2).
\]

Of course any such metric descends via the two fold cover \( K/H \to K/\hat{H} \). Notice that \( \text{Ad}_{ajp} \) has a negative determinant and thus right multiplication with \( a \) induces an orientation reversing isometry of \( \text{Sp}(2)/H \) and \( \text{Sp}(2)/\hat{H} \) is a non-orientable manifold. On the other hand, we know that a positively curved odd dimensional manifold is orientable by the Synge Lemma.

It remains to verify the claim. The element \( b = \text{diag}(e^{i\psi}, e^{i\psi}) \) is in the normalizer of \( H \). Therefore the isometry type does not change if we replace \( G \) by \( G_b = \text{Ad}_b G \text{Ad}_{b^{-1}} \) to define an induced metric on \( \text{Sp}(2)/H \). We plan to show that for a suitable choice of \( b \) the endomorphisms \( G_b \) and \( \text{Ad}_a \) commute.

Consider the isotropy decomposition \( p = p_0 \oplus p_2 \oplus p_4 \oplus p_6 \) preserved by \( G \), where \( H \) acts trivially on the 1-dimensional space \( p_0 \) and with weight \( n \) on \( p_n \), \( n = 2, 4, 6 \). These subspaces can be described explicitly as follows: \( p_0 = \mathbb{R} \text{diag}(-3i, i) \), \( p_6 = \mathbb{C} \cdot \text{diag}(0, j) \),

\[
p_2 = \left\{ \begin{pmatrix} w & -z \\ z & 0 \end{pmatrix} \middle| w \in \mathbb{C} \cdot j, \ z \in \mathbb{C} \right\} \quad \text{and} \quad p_4 = \left\{ \begin{pmatrix} 0 & w \\ w & 0 \end{pmatrix} \middle| w \in \mathbb{C} \cdot j \right\}.
\]

In particular, \( p_2 \) is 4-dimensional, whereas \( p_4 \) and \( p_6 \) are 2-dimensional. Notice that each of these spaces is also \( \text{Ad}_a \) invariant. Since \( G_b \) restricts to a multiple of the identity on \( p_i \) for \( i = 0, 4, 6 \), it remains to show that \( G_{bjp_2} \) commutes with \( \text{Ad}_{ajp_2} \) for a suitable choice of \( b \).

The action of \( H \) induces a natural complex structure on \( p_2 \) and we can view \( G_{jp_2} \) as hermitian endomorphism with respect to this complex structure and the scalar product \( Q \). The element \( \text{Ad}_{ajp_2} \) corresponds to complex conjugation if we identify the real vector subspace

\[
W = \left\{ \begin{pmatrix} \beta j & -\delta \\ \delta & \beta \end{pmatrix} \middle| \delta, \beta \in \mathbb{R} \right\}.
\]

of \( p_2 \) with \( \mathbb{R}^2 \). Hence if we consider the hermitian \( 2 \times 2 \) matrix representing \( G_{jp_2} \) with respect to an orthonormal basis of \( W \), then \( G \) commutes with \( \text{Ad}_a \) if this matrix is real. If we replace \( G \) by
Gₜ the corresponding 2 × 2 matrix changes by conjugating it with \( \text{diag}(e^{2\psi}, 1) \) and clearly we can turn the given hermitian matrix into a symmetric real matrix for a suitable choice of \( \psi \).

**Final Remarks**

An analysis of the proof shows: If a simply connected compact homogeneous space \( K/H \) satisfies the conclusion of the Berger Lemma, but does not admit an invariant metric of positive sectional curvature then either one can find commuting eigenvectors or \( K/H \) is given by \( \text{Sp}(2)/\text{diag}(z^3, z) \), \( \text{Sp}(2)/\text{diag}(z, z) \) or \( \text{Sp}(3)/\{\text{diag}(z, z, g) \mid z \in S^1, g \in S^3\} \). The first space is ruled out in section 5.14. It is also the most difficult case in [BB] where one finds another proof that it does not admit positive curvature, by exhibiting two commuting vectors (not necessarily eigenvectors) with 0 curvature. The third space contains the second one as a totally geodesic submanifold. It was pointed out by M. Xu and J. Wolf, that Bérard Bergery did not consider the most general class of metrics on the second space when he tried to rule out positive curvature. They also show that one can find metrics on it were all planes spanned by commuting vectors have positive curvature. We recall that we rule out this potential example in section 5.5 using part b) of Lemma 1.1.

**References**


[WX] J. Wolf and M. Xu, *Sp(2)/U(1) and a positive curvature problem*, arxiv.org/abs/1502.02755