Instructions for written homework.

• You are encouraged to work with others on these problems. You are expected to write the solutions yourself.

• Your solutions should be legible and well organized. **Graders will deduct points for solutions that are difficult to read, or are disorganized.** For the benefit of the grader, please turn in solutions to problems in the assigned order, i.e. #1, then #2, then #3, etc.

• Staple your pages together. Do not turn in notebook paper with tattered edges. **Homework that is unstapled or is lacking a name will not be graded.**

Problem 1 (Fall 2011). Which of the following limits exist?

a.
\[\lim_{(x,y) \to (0,0)} \frac{x^4 - y^4}{x^2 - y^2} \]

b.
\[\lim_{(x,y) \to (0,0)} \frac{x - y}{x^2 + y^2} \]

c.
\[\lim_{(x,y) \to (0,0)} \frac{x + y}{\sqrt{x^2 + y^2}} \]

for \(0 \leq t \leq 2\)

Problem 2. Does the following limit exist

\[\lim_{(x,y) \to (0,0)} \frac{(x^2 + y^2) \sin(x^2 + y^2)}{x^4 + y^4} ? \]

If yes, find the limit.

Problem 3 (Fall 2010). The function \(z = f(x, y)\) is given implicitly by the equation \(z^3 + z = x^2 + y^2\). Note that when \(x = 1\) and \(y = 1\), \(z = 1\) as well. Compute \(\frac{\partial f}{\partial x}(1,1)\)

Problem 4 (Fall 2010). Consider the surface \(z = x^2 + x + 2y^2\). At what point \((x_0, y_0, z_0)\) is the tangent plane parallel to the plane \(x + 4y + z = 0\) ? What is the \(z\) coordinate of that point ?
Problem 5 (Sprint 2008). Let f be the function
\[f(x, y) = \ln(x + y) \]
for every $(x, y) \in \mathbb{R}^2$ and $x + y > 0$. A unit vector in \mathbb{R}^2 is a vector of length 1. What is the maximum value of the directional derivative $D_{\vec{u}}(f)$ of f at the point $(x, y) = (2, -1)$ as \vec{u} ranges over all unit vectors in \mathbb{R}^2.

Problem 6 (Spring 2008). Find the equation of the tangent plane to the surface
\[4x^4 + 2y^4 + z^4 = 22 \]
at the point $(1, 1, 2)$.

Problem 7 (Fall 2008). Let $T(x, y) = x^2 + y^2 - x - y$ be the temperature of at the point (x, y) in the plane. A lizard sitting at the point $(1, 3)$ wants to increase his surrounding temperature as quickly as possible. In which direction should he move?

Problem 8 (Spring 2013). Let
\[f(x, y, z) = \ln(x^2 + y^2) - z^3. \]
Using the linearization of f at $(-1, 1, 1)$ estimate the value of $f(-0.9, 1.2, 1.1)$. (Your final answer can contain $\ln 2$.)

Problem 9 (Spring 2013). Find the local minimum of the following function
\[f(x, y) = x^3 - 3xy + y^2 \]

Problem 10 (Fall 2012). Find all the critical points of the function $h(x, y) = 2x \sin(y) + y^2 - x^2$ and determine which is a local maximum, which is a local minimum and which is saddle point.