Instructions for written homework.

- You are encouraged to work with others on these problems. You are expected to write the solutions yourself.

- Your solutions should be legible and well organized. **Graders will deduct points for solutions that are difficult to read, or are disorganized.** For the benefit of the grader, please turn in solutions to problems in the assigned order, i.e. #1, then #2, then #3, etc.

- Staple your pages together. Do not turn in notebook paper with tattered edges. **Homework that is unstapled or is lacking a name will not be graded.**

Problem 1. What is the area of the region in the plane bounded by the curve given in polar coordinates by

\[r = 4 + 2 \cos(2\theta). \]

Problem 2 (Fall 2011). Find the volume of the solid \(R \) bounded by the surface given in spherical coordinates by the equation

\[\rho = (\sin \phi)^{1/3} \]

Problem 3 (Spring 2011). Find the volume of the solid bounded above by the paraboloid

\[z = 5 - x^2 - y^2 \]

and below by the paraboloid

\[z = 4x^2 + 4y^2. \]

Problem 4 (Spring 2011). Compute the volume of the solid bounded by the four surfaces \(x + z = 1, x + z = -1, z = 1 - y^2 \), and \(z = y^2 - 1 \).

Problem 5 (Fall 2010). Find the volume of the region \(R \) inside the sphere of radius 2 and above the cone

\[\sqrt{3}z = \sqrt{x^2 + y^2}. \]

Problem 6 (Spring 2013). Compute the integral

\[
\int_0^1 \int_0^{2-2x} \frac{(2x - y)^2}{2x + y} dy \, dx
\]

Hint: A change of variable might help.
Problem 7 (Fall 2010). Find the volume inside the cylinder

\[x^2 + y^2 = 1, \]

below the plane

\[x + y + z = 2, \]

above the xy plane, and in the first octant.

Problem 8 (Fall 2010). Evaluate

\[\iint_S (x + y)e^{x^2 - y^2} \, dA \]

where \(S \) is the rectangle with vertices \((1, 0), (0, 1), (-1/2, 1/2)\) and \((1/2, -1/2)\). Note that \(x^2 - y^2 = (x + y)(x - y) \).

Problem 9 (Fall 2011). Evaluate the integral

\[\iint_R \cos \left(\frac{x - y}{x + y} \right) \, dA, \]

where \(R \) is the triangle in the xy-plane with vertices \((0, 0), (2, 2)\), and \((2 + \pi, 2 - \pi)\).