LITTLE TIDBITS ABOUT THE SYMMETRIC GROUP

ABSTRACT. We give a very elementary introduction to the symmetric group. Section 1 gives the minimal
background in symmetric groups. In sections 2 to 5 we discuss the Orbit-Stabilizer Theorem as well as
Pélya theory of counting symmetries, applying it to problems such as enumerating vertex coloring of regular
shapes and isomers of molecules. Section 6 proves Cayley’s theorem for finite groups, section 7 talks about
the Futurama theorem from the well-known animated series, and finally section 8 explains the math behind
the 100 prisoners problem.

1. THE SYMMETRIC GROUP

The symmetric group is something that we are all familiar with, because it is simply the set of permu-
tations of a finite set. Let us now make this precise. Note that we denote composition of two functions
f:A— Band g: B— C as gf throughout instead of g o f.

Definition 1. Let n > 1 be an integer. The symmetric group &,, is defined to be the set of all bijective
functions on {1,...,n}. An element of &,, is called a permutation.

Proposition 2. S,, has the following properties:
(a) it has cardinality | S| = n!,
(b) the composition of two permutations is a permutation,
(¢) composition of permutations is associative, i.e. that (fg)h = f(gh) for all f,g,h € &,
(d) the identity permutation 1,, € &, defined by 1, (k) =k for all k € {1,...,n}, has 1,,f = fl, = f
forall f € &,,
(e) every f € &, has a unique inverse function f~1 € &, such that ff~' = f71f =1,.
(f) If f,9 € Gn, then (fg)~' =g ' f".

Proof. Easy consequence of the basic property of functions, and left to the reader. O

The most common way to represent elements of &,, is by a 2 by n matrix, where the first row is simply
writing down 1 to n in the usual integer ordering, and the second row is writing down the entries after
permuting it. For example, in &3, the element that permutes 1 and 3 and leaves 2 fixed is given by

1 2 3
3 2 1)’

while the element right translating 1,2, 3 by one is given by

1 2 3
2 3 1)°

Note that it is quite a pain to write two rows, so we can represent them by something called cycle factorization,
where we write elements into disjoint cycles. Every disjoint cycle of length k is called a k-cycle. It’s best to
explain these in terms of an example. Consider the element

(1234567 8 o
7= 2 4815 3 6 7 8-

Elements that cycles in a loop are grouped together and written as a cycle. Here we see 1 maps to 2, which
maps to 4, which maps back to 1, so we can write them as (1 2 4). Continuing in this manner we see
the cycle factorization of ¢ is 0 = (1 2 4)(3 8 7 6)(5). It is a convention to drop all 1-cycles in a cycle
factorization, so we can also write

o=(124)(3876).
Since o is seen to be a function, we can perform our usual function composition and function evaluation
from right to left. For example, (1) = 2 and 0~ 1(6) = 7 and o(5) = 5 = o~ 1(5). If we let

7=(135)28)467),
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then (r0)(1) = 7(2) =8 and (10)7(2) = (¢~ 177 1)(2) = o7 1(8) = 3.

We now study a geometrical subset of &,,, called the dihedral group. One way to describe it is the set
of all symmetries of a regular n-gon, i.e. all bijections of vertices of the n-gon that preserves the distance
between each vertex. For example, reflections and rotations about an axis are all symmetries of a regular
n-gon. In fact, the proposition below tells us that these are all the symmetries on a regular n-gon.

Proposition 3. There are exactly 2n symmetries of a regular n-gon.

Proof. Consider two adjacent vertices v; and vy on the regular n-gon. We can send v; to the n possible
positions of the vertices of the regular n-gon. Then vo has two possible positions, either to the left or right
of vy. This gives 2n possible symmetries, and it’s clear the symmetries are pairwise distinct. O

There is an abstract way to match every symmetry of a regular n-gon into an element of &,,. By labeling

the vertices of the regular n-gon counterclockwise by the numbers {1,...,n}, the symmetries are:
e the set of n rotations R,, = {e,r,... ,7‘"‘1}, where we define r:== (1 2 --- n),
e the set of n reflections t,, = {s, sr,...,sr" 1}, where we define

— {(1 n)(2 nfl)"‘(%(ﬂ*Q) %(TLJrQ)) if n is even,
2n)@Bn-1)(3(n-1) :(n+3)) ifnisodd.

Geometrically, the r corresponds to rotation by 27 /n radians counterclockwise about the center of the n-gon,
and the s corresponds to reflection about some axis of symmetry depending on the parity of n.

Definition 4. The dihedral group D, is the subset of &,, with elements R,, L ¢,,.

Example 5. D, is shown in terms of pictures as the eight symmetries of a square below.

2 1 1 4 4 3 3 2
e r r? r3

3 4 2 3 1 2 4 1

3 4 2 3 1 2 4 1
s s sr? sr3

2 1 1 4 4 3 3 2

The following proposition tells us r and s behaves like what we want. Let us define the order of g € &,,
to be
~Jmin{n € Z>o: g" = e} if there exists n € Z-( with g" = 1,
9] := otherwise.

Proposition 6. With the notation of an order of an element in &,, as above, |s| = 2, |r| = n, andrs = sr—1.

Proof. Left as an easy computational exercise using the definitions of » and s above. O

Let us now show that the abstract construction of the symmetries of a regular n-gon satisfies basic
properties analogous to those listed in proposition 2. The proof is very combinatorial, as is most arguments
of basic group theory.

Proposition 7. Ds, has the following properties:
(a) it has cardinality 2n,
(b) Zf fvg € D2n; then gf € D2n7
(c) composing elements in Doy, is associative,
(d) the identity permutation 1, is in Day,
(e) every f € D,, has a unique inverse f~1 € D, such that ff~' = f~'f =1,.

Proof. Ds, has cardinality 2n by proposition 3. Associativity follows because Ds,, C &, and the identity is
in Dy, by definition. For inverses, 7 ~* is the inverse to r* and sr* is its own inverse for k € {1,...,n}, as
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o rkpn—k — ,rkJr(nfk) N
k

o (s7F)(srF) = s(rF=tsr= 1)k = s(rkF=2sr=2)rF = ... = s(srF)rk = s%e = e, using the identities
rs=sr~!and |s| = 2.

Finally to show part (b). Let s'r?, s*r¥ € Da, for i,z € {0,1} and j,y € {1,...,n}. Consider the following
procedure:

e Choose the rightmost s in o, where a := s'rJs%rV.

e If this s is at the right of any other s, multiply them so that they equal the identity and we lose
two terms in ajas---a,. Otherwise an 7 is at the left of this s, so use the relation rs = sr—! in
proposition 6 to push this s left.

e Repeat the procedure until there is no s at the right of any r in «.

In the end we will get that o = s%® with @ € {0,1} and b € {1,...,n} after using the fact that s has order
2 and r has order n, and so a € Dsy,. O

r(nfk)+k — ,,,nfkrlc7

Exercise 8. Show that R,, also satisfy properties (b) to (e) in proposition 7, but v, does not satisfy properties
(b) and (c).
We introduce a final important subset of G,, called the alternating group.

Definition 9. Let n > 2. The alternating group is the subset of G,, containing the set of elements which can
be written as an even number of compositions $; - - - So, where $1,...,82p € S:={(a b) : 1 <a <b<n}.
Elements in the set S are called transpositions of &,,.

We want to show A,, has similar properties as &,, and Ds,,. But this is a little trickier than the above.
In particular we will need to prove two lemmas first.

Lemma 10. For n > 2, every element in S,, is a product of transpositions.

Proof. As we can write every element o € &,, as a composition of disjoint cycles, it suffices to show this for
some (1 2 --- k) € &,, after relabeling. But observe (1 2 --- k)= (1 k)(1 k—1)---(1 2). O

Exercise 11. In fact, every element in &, can be written as a composition of the transpositions from
{1 k) :ke{l,...,n}} since (@ b) = (1 a)(1 b)(1 a). Strengthen lemma 10 in two more different directions
as below by doing similar computations.
(a) Every element in &, can be written as a composition of elements from {(1 2),(2,3),...,(n—1 n)}.
(b) Every element in &,, can be written as a composition of elements from {(1 2 --- n—1 n),(1 2)}.

Lemma 12. For any o € &, with n > 2, let sgn(c) be the number of elements modulo 2 after writing o as
a product of transpositions. Then sgn(o) is well-defined, i.e. every element in &, can be written either as
an even or odd number of transpositions, but not both.

Proof. Tt suffices to show the lemma for the identity permutation 1 := 1,,. To see this, suppose 71 - - - 7, and
7] --- 7! are two ways to write o as transpositions. Then 1 =7 ---7/ 7,1 --- 7 1. If sgn(1) is well-defined,
this shows m +n =0 (mod 2), so m =n (mod 2).

Let us now show sgn(1l) is well-defined. We must show 1 always is an even product of transpositions.
Clearly 1 cannot be written as a transposition, and for any transposition (a; a2) with a; # ag, we can write
1 = (a1 az2)(a; a2). Now by induction suppose for some k > 2 that any way of writing 1 as a product of
less than k transpositions must be even.

Say 7 = (a1 b1)---(ag bk) equals 1, with some of the a; and b; possibly equal. Note that disjoint cycles
commute (which means o7 = 70 if 7 and o are disjoint cycles) and (¢; ¢;)(¢; cx) = (cx ¢j)(¢i ¢j). Hence,
by picking the leftmost transposition of 7 containing a; other than (a; b1), we can perform this until the
leftmost two transpositions are either of the form (a; b1)(a1 b1) =1 or (a1 b1)(a1 b2) = (a1 b2)(b1 ba).

In the first case we now have k — 2 transpositions, which must be even by induction, so k is even. For
the second case, iterate the procedure in the above paragraph, which must only be finitely many times as
we only have finitely many transpositions with a;. If we always land in the second case, then in the end we
will get the leftmost transposition is the only one containing aq, so that 1(a;) = b1 # a1, a contradiction to
1 being the identity of &,,. Hence we will eventually land in the first case after a finite number of steps, so
we can finish by induction. O



We are finally ready to prove the following proposition.

Proposition 13. A, has the following properties:
(a) it has cardinality n!/2,
(b) if f,g € An, then gf € Ay,
(¢) composing elements in A, is associative, that is, (fg)h = f(gh) for all f,g,h € A,
(d) the identity permutation 1, is in A,
(e) every f € A, has a unique inverse f~* € A, such that ff~' = f1f =1,.

Proof. The last four properties are clear by the well-definedness of sgn. Let us show A, is a group of
cardinality n!/2. We demonstrate a bijection between it and the set O,, of elements which can be written
as an odd number of transpositions. The bijection we seek is f : A, — O, by f(r) = (1 2)7, which is
again well-defined by the well-definedness of sgn. It is a bijection because the inverse is given by f~! = f.
This would imply what we want as A, UO,, = &,, by lemma 10 and A, N O, = @ by lemma 12, so that
|A,| =|O,| and A, has cardinality | &, |/2 = n!/2. O

Generally we do not like to consider the set O,, described in the proof of proposition 13. This is because
composing two transpositions lands us inside A,, not O,.

2. BURNSIDE’S LEMMA: APPLICATIONS

In this section we state the symmetric group version of Burnside’s lemma and give various applications of
it, deferring the proof of the general statement to the next section. Let us first give a motivational example
of the type of questions Burnside’s lemma will be useful in.

Example 14. Let us look at how many nonequivalent ways there are to color the vertices of the triangle
with colors R, G, B under rotation. An easy listing tells us there are 11 of them as follows.

VANWANVANVASVANVAN
VANVANYANVANYAN

However, there are only 10 nonequivalent colorings under both rotation and reflection, because the last two
colorings listed above are equivalent under a reflection.

Certainly we can enumerate other symmetries similarly, but they are not easy to do directly if we have
a large data. Hence we will discuss a tool called Burnside’s lemma. In fact this is the key step to Pdlya’s
enumeration theorem, which is the main theorem of Pélya theory and discussed in section 4. Note that we
can already use Burnside’s lemma to compute lots of stuff, and it is easier to compute things using this
than Pdélya’s enumeration theorem (of course some data is lost and we can’t get more interesting results).
As promised let us now give the symmetric group version of Burnside’s lemma. We need two preliminary
definitions.

Definition 15. A subset G of the symmetric group &, is a permutation group if it satisfies the following
four properties under function composition:

if f,g € G, then fg € G,

e composition of permutations in G is associative, i.e. that (fg)h = f(gh) for all f,g,h € G,

e G contains the identity permutation 1, defined by 1, (k) =k for all k € {1,...,n},

e cvery f € G has a unique inverse function f~! € G such that ff~' = f=1f = 1,.

Example 16. The trivial group {1,,} is a permutation group. The sets R,, and D,, and A,, discussed in the
previous section are permutation groups, but not v,.
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Definition 17. Let G be a permutation group, and let S be a set. We say G acts on S if there is a map
G xS — S by (g,h) — g - h such that the following holds:

e gh-s=g-(h-s)forall gh € GandseS,

e lg-s=sforallseS.
We also define the following notions:

e the orbit of an element s € S'is O; :={g-s:g € G},

o the stabilizer of an element s € S'is G, :={ge G:g-s = s},

e the fized set of an element g € G is Fix(g) :={s € S:¢g-s=s}.

Example 18. The symmetric group &,, (or any permutation group) acts on any set S with n elements
naturally as follow: writing S = {s1,...,s,}, the group action is defined to be the action on indices, that
is, 0 - 8; = 54(;). The orbit O,, = S and the stabilizer G, = {0 € &,, : 0(i) = i}. The fixed points of any
o€ 6, is Fix(o) ={s; € S:0(j) =j}

Finally, the symmetric group version of Burnside’s lemma, followed by applications.

Proposition 19 (Burnside, symmetric group version). Let G be a permutation group acting on a set S, and
let S/G be the number of distinct orbits. Then the cardinality of S/G can be computed as

15/G| = fé' S | Fix(g)].

e

To make sure the right hand side is always defined we need |G| > 1. But this is true since by the definition
of a permutation group G contains the identity permutation 1,,.

Example 20 (Coloring of vertices of regular n-gons). Proposition 19 doesn’t seem to relate to colorings of
vertices of regular n-gons, but in fact it does. We can consider the permutation group D,, and let S be
the set of all k™ possible coloring of the vertices of the regular n-gons with k colors. Then we can define an
action of D,, on S simply by symmetries, so that, for some g € D,,:
e the orbit O, is the set of all colorings of an n-gon that are pairwise related by a rotation or a
reflection,
e the fixed set Fix(g) is the set of all colorings s € S of an n-gon that are preserved under the action
of g, i.e. that we cannot tell s and g---s apart since s = g - s.
Note that we can also look at the different types of colorings on the regular n-gon, for example on the edges,
but we will not consider it here since they all use similar steps.

Now for a concrete computation of this example. Consider the square (regular 4-gon), and suppose we
have 3 colors. All symmetries of the square (regular 4-gon) are listed in example 5. Denote S to be all
3% = 81 colorings of the vertices of the square. We demonstrate how to count Fix(z) for each x € D, using
the two cases below.

e If we take r € Do,, then all colorings of the square fixed under the action of r are those where all
vertices are colored with the same color, so | Fix(r)| = 3.
o [f we take sr € Dy, then all colorings of the square fixed under the action of sr are those with vertices
1 and 3 the same color, and vertices 2 and 4 can be colored independently, so | Fix(sr)| = 3% = 27.
Continuing in the same manner for the remaining six elements in Da,, and using the fact that |Dy| = 8, we
see there are 21 nonequivalent colorings here. In fact, by a similar proof, given k colors we have

E* 4+ 2k% + 3k% + 2k
< .

|S/ Dyl =

Although a bit overkill, this also give a combinatorial proof that (k* + 2k® + 3k2 + 2k)/8 is always integer-
valued if k is a positive integer.



Exercise 21. Suppose we have k > 1 colors. Find the number of different ways to color the nine identical
points (under dihedral group action) on a square with k colors as shown.

o o o
o o o
[e] [e] [e]

Exercise 22. Find a general equation to compute the number of ways to color a regular n-gon with k colors.
A way to do this is to consider the set of rotations R, and the set of reflections v,, separately.

Burnside’s lemma can also be used to count symmetries of 3-dimensional objects under rotations (which
is clearly still a group) in the same sense as for polygons. We do not consider three-dimensional reflections
in this case because generally we cannot do that in the real world. If we are more chemistry-minded, this is
because we want to avoid chiral compounds.

Example 23 (Rotation group of the tetrahedron). Consider the tetrahedron, which is the regular polygon
with 4 triangular faces, 6 edges, and 4 vertices as below.

Let us show the set of rotations R of the tetrahedron is isomorphic to the alternating group Ay, i.e. there
is a bijection f : R — Ay such that f(rire) = f(r1)f(re) for any r1,72 € R, where we can compose two
rotations in the usual way. Notice a 2-cycle corresponds to a reflection (not a rotation!) through an edge
of the tetrahedron. Also notice a 3-cycle corresponds to a rotation through a vertex and the center of the
opposite face. It can be easily seen a 4-cycle does not correspond to a rotation. A composition of two disjoint
transpositions is also a rotation through the center of two opposite edges. Hence by lemma 10 the rotation
group of the tetrahedron is indeed A4, and we can construct an isomorphism f : R — Ay just by assigning
some labeling 1,2, 3,4 to the vertices.

With this we can compute how many ways to color the four vertices of the tetrahedron with n colors just
as in example 20, which turns out to be equal to (n% + 8n? + 3n*)/12. The only difference is that one will
now have 12 = |Ay4] cases to compute out instead of 8 in example 20.

Exercise 24 (Symmetries of the cube). Suppose we have k > 1 colors. Let us consider the cube, which is
the reqular polytope with 6 square faces, 12 edges, and 8 vertices as below.

4
4
7

(a) Show that the set of rotations R of the cube is isomorphic to the symmetric group S, i.e. that there
is a bijection f : R — Ay such that f(rir2) = f(r1)f(r2) for any r1,r2 € R, where we can compose
two rotations in the usual way.

(b) Show that there are (n% + 3n* 4+ 12n3 + 8n2) /24 distinct ways to color the six faces of the cube with
n colors under rotation.

(¢) Find the number of distinct ways to color the faces of a cube (under rotation) with k colors such that
two opposite faces have the same colors. Note that there are three sets of opposite faces.

(d) Suppose Eric and Kyle colors two cube with the requirements given in in part (c¢). Pick j rotations
of the 24 at random, with 1 < j < 24. Find the probability both their colorings are the same and
each rigid motion of the j fizes at least f pairs of faces, with 0 < f < 3.
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Example 25 (Enumerating isomers of tetramethylnaphthalene). Time for a chemistry application. The
hydrocarbon naphthalene has ten carbon atoms (C) arranged in a double hexagon, and eight hydrogen atoms
(H) attached at each of the corners of the hexagons. Tetramethylnaphthalene is obtained by replacing four
of the hydrogen atoms of naphthalene with methyl groups (CHs). We want to find how many isomers there
are. That is, we want to find the number of ways to label the numbers in the following diagram with four
H and four CHs.

2 3

1 \ C C / 4
C C C
c \ c C
8 C 5
7 6
First up is to find the symmetry group of the diagram above (under rotation in three-dimensional space). It
is easily seen to be the subset
Vi={1,(1 5)(2 6)(3 7)(4 8),(1 4)(2 7)(3 6)(5 8),(1 8)(2 3)(4 5)(6 7)}

of Sg, noting that V is indeed a permutation group (the reader who knows some algebra will notice this is
isomorphic to the Klein 4-group). Next, we notice that

| Fix(1)] = (i) — 70,

| Fix(z)| = (;‘) — 6 for cach z € V' \ {1}.

The first equality is the computation for all possible arrangements not considering symmetries, which is
equivalent to asking the number of ways to arrange four H and four C'Hj3 in a line. The second equality is
equivalent to asking the number of ways to arrange two HH and two C'HsC Hj in a line. Hence proposition
19 tells us that the number of isomers of tetramethylnaphthalene is (70 + 3 - 6)/4 = 22.

c

Exercise 26. A Mdbius strip is a 3-dimensional figure with only one suface. To get a Mébius strip, get a
strip of paper, twist it by 180 degrees along two opposite edges and glue these two edges together. A picture

is given below.

Here we want to discuss the ways to color a Mobius strip by dividing it into n equal pieces on its surface by
drawing n > 1 lines perpendicular to its edges.

a) Find all rotations of the Mobius strip for a fixed n.

b) Find the number of different ways to color the n pieces on its surface with k > 1 colors.

Exercise 27. Consider the dodecahedron, which is the regular polygon with 12 pentagonal faces, 30 edges,
and 20 vertices as below.

Show that there are 9099 distinct ways to color the faces of a dodecahedron with three colors up to rotation.
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3. BURNSIDE’S LEMMA: PROOF

In the previous two sections we considered some basic definitions of symmetric groups that can be
generalized nicely to a topic known as group theory. We now generalize the definitions given in definitions
15 and 17 to the group theory setting.

Definition 28. Let G be a set. A binary operation on G is a function * : G x G — G, and we write
g*h :=x(g,h) for g,h € G (we write write gh to mean g * h as well). A group is a set G with a binary
operation * satisfying the following properties:

e associativity, i.e. (f*g)xh= f*(g=*h)forall f,g9,h € G,

e existence of an identity 1 € G such that 1xg=gx1 =g for all g € G,

e cvery element g € G has an inverse g~' € G such that gx g~ ! =g~ lg= 1.
A subset H of G such that x xy € H for all z,y € H and satisfying the above three properties is called a
subgroup of H.

Exercise 29. Let G be a group. Show that the identity of G is unique, and the inverse of every element is
unique. Also give an example to show that in general gh # hg for some g, h € G.

Definition 30. Let G be a group, and let S be a set. We say G acts on S if there is a map G x S — S
by (g,h) — ¢ - h such that the following holds:

e gh-s=g-(h-s)forall gh € GandseS,

e lg-s=sforallseS.
We also define the following notions:

e the orbit of an element s € S'is O, :={g-s:9 € G},

e the stabilizer of an element s € Sis Gs :={g € G :g-s= s},

o the fized set of an element g € G is Fix(g) :={s € S:g-s=s}.

Proposition 31. Let G be a group acting on a set S. Then, by restricting the binary operation of G to G
for any s € S, Gs is a subgroup of G.

Proof. Let z,y € Gs. Then z-s = sand h-s =s. Hence zy € Gs since zy-s =x-(y-s) =x-s = s.
Associativity is direct as G is a subset of G, and 1 € G since 1-s = s. Finally, if g € G, then g-s = s, so
gteGasgt-s=g1-(g-s)=glg-s=s. O

We will now show that, for any group G acting on a set .S, the orbits of S actually partition S, i.e. that
Uses Os = S, and that for every s,t € S either O, N O, = ) or Oy = O;. To do this it is convenient to
introduce the notation of an equivalence relation.

Definition 32. Let X be a set. We say ~ is a relation on X if it is a subset of X x X. If (z,y) € X x X,
we say that x is related to y, and in notation x ~ y. We also say ~ is an equivalence relation on X if it is a
relation that is:

o reflerive, i.e. x ~ x for all x € X,

e symmetric, i.e. for all x,y € X, if x ~ gy, then y ~ x,

e transitive, i.e. for all z,y,z € X, if ¢ ~y and y ~ z, then = ~ z.
Also define [z] := {y € X : y ~ z} to be the equivalence class of an element z € X.

The next proposition tells us equivalence relations are good because it partitions a set.

Proposition 33. The equivalence classes of X with respect to an equivalence relation ~ partitions X. That
is, for x,y € X, necessarily [x] = [y] if v ~y and [z]N[y] =0 if x £ y.

Proof. Suppose x ~ y with z,y € X. We want to show [z] = [y]. Let z € [z]. Then z ~ z. But = ~ y, so
by transitivity z ~ y, implying z € [y] and [z] C [y]. Similarly letting 2 € [y], then z ~ y. But  ~ gy, so by
symmetry y ~ x and by transitivity z ~ , implying z € [z] and [y] C [z]. Thus [z] = [y].

Now suppose x ¢ y with 2,y € X. Also suppose that [z] N [y] # 0. Then there exists z € [z] N [y], so that
z ~x and z ~ y. By symmetry x ~ z, and by transitivity = ~ y, a contradiction. Thus [z] N [y] = 0. O

Using this language of equivalence relations, it suffices to show that the relation of being in the same
orbit of a group action is an equivalence relation to show that orbits partition the set.
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Proposition 34. Let G be a group acting on a set S. Define a relation ~ on S by a ~b if b =g-a for
some g € G. Then ~ is an equivalence relation on S. In particular, |S| =" ¢ |Os| by proposition 33.

Proof. Note that 1-s = s for all s € S, so that s ~ s and ~ is reflexive. To show symmetry, suppose s,t € S
such that s ~t. Then g-s =t for some g € G. Then g7' -t =g !1.-(g-5) =g lg-s=1-5=s, so that
t ~ s. Finally to show transitivity, suppose s,t,u € S such that s ~tand ¢t ~u. Theng-s=tand h-t =u
for some g,h € G. Then hg € G with hg-s=h-(g-s) =h-t=u, so that s ~ u. O

To prepare for Burnside’s lemma we will need an important result.

Lemma 35 (Orbit-Stabilizer). Let G be a finite group acting on S, and let s € S. Then |G| = |O4||Gs|.
Hence, if s,t € S are in the same orbit, then |G| = |Gt/

Proof. We prove the first statement as the second statement is a direct consequence of the first. There
is a clear surjection f : G — O, by f(g9) = g-s. Note that {f~!(z) : * € O,} partitions G. To see
this, if * = y in S then certainly f~1(x) = f~1(y), and if f=(z) N f~1(y) # 0 then there exists g € G
so that x = g-s = y. To finish we need to show that |f~1(x)| = |f~!(y)| for all 2,5 € S, so that
|G = Ysco. If @) = O] fH{s} = [Os]|Gs -

Let us now show that | f =1 (z)| = | f~'(y)| for all z,y € S. We see that | f~1(g-s)| = |Gy.s| since there is the
bijection ¢ : f~(g-5) — Gg.s by @(h) = g~ *h with inverse ¢~!(h) = gh. Note that ¢ is well-defined, since
ifhe f~1(g-s) then h-s = g-s, so that ¢(h)-s = g~'h-s = s. Hence it suffices to prove |G,.s| = |G| for each
g € G, which is true since there is the bijection ¢ : G, — G, by ¢(h) = hg with inverse ¢~'(h) = hg™*.
Again notice ¢ is well-defined, since if h € Gg.5 then h- (g-s) = s, so that ¢(h) -s =hg-s =s. O

Finally, the generalized version of Burnside’s lemma given in proposition 19. We call it a lemma instead
of a proposition as named below since it will be used to prove Pdlya’s enumeration theorem in the next
section.

Proposition 36 (Burnside). Let G be a finite group acting on a set S, and let ~ be the equivalence relation
on S defined in proposition 34. Let S/G be the number of distinct orbits. Then the cardinality of S/G can
be computed as

15/G| = %” S | Fix(g)|-

geG

Proof. With a bit of algebraic manipulation, we have

Gls/Gl=Icl > 1

{Os:s€8}

e 2 T
{0,:5€8}s€O, ¢
Gl > Z%'
{Os:seS}seos‘ |

> > g

{0s:5€8} s€0;

= 1G]

ses

={(g,s) e GxS:g-s5s=s}

= > | Fix(g)l-

geG

(by lemma 35)

Therefore |S/G| is computed as claimed. O



4. FINITE ROTATIONS GROUPS

With the definition of groups, we present another result that follows from the Orbit-Stabilier theorem
(Lemma 35). In this section we will assume basic knowledge of matrix algebra. Recall that the 3 x 3 special
orthogonal group SOz is defined to be the group of all rotations about the origin of R3.

Proposition 37. The group SOs can also be thought of as the following group of matrices:
S0z = {A € GL3;(R) : AAT = ATA =T and det(A) = 1} .

Proof. Since elements of SOz are linear transformations, we can represent them by a matrix in M € GL3(R).
Furthermore, M sends an orthonormal basis to another orthonormal basis, so it is automatic that MM7T =
MTM = 1. Thus det(M) € {—1,1}. As each such M must preserve orientation, this forces det(M) =1. 0

We can think of many kinds of infinite rotation groups. The purpose of this section is to prove the
following theorem.

Theorem 38. There are only five kinds of finite subgroups of SOs as listed below.
C, the cyclic group of rotations by 2w /k.

Dy, the dihedral group of order 2k.

T, the group of 12 rotations of a tetrahedron.

O, the group of 24 rotations of a cube or octahedron.

1, the group of 60 rotations of a dodecahedron or icosahedron.

L DD

Tetrahedron Cube

Octahedron

oy

Dodecahedron Icosahedron

Exercise 39. Check that the five solids above, called the Platonic solids, actually have rotation groups of
order stated. In fact, the groups are Ay and Sy and As. One can also show that the Platonic solids are the
only five convex reqular polyhedra. Prove this using the well-known Euler’s formula for polyhedra.

Exercise 40. Here is an easy exercise that will be used in the proof of theorem 38. Choose an axis of rotation
A, and let G be a finite nontrivial group of rotations about A. Show that G is a cyclic group.

Proof of Theorem 38. Let G be a finite nontrivial subgroup of SO3 of order N > 1. Notice each nontrivial
rotation in G contains exactly two poles on the unit sphere S2, which is the intersection of the axis of rotation
with S2. Let P be the set of all poles of G\ {1}. Note that P can be partitioned into its orbits. To see
this, we just need to see that hp € P for any h € G\ {1} and p € P. But this is trivial: if p is stabilized by
g € G\ {1}, then hp is stabilized by hgh~! with hgh~! # 1.

For every p € P let G, be the group of all rotations about p that are in G, including the trivial rotation.
Note that G, is a subgroup of G by proposition 31, and that G, is generated by a rotation of angle 27/,
with r, > 1. Hence |G| = rp. By a simple application of proposition 34 one concludes that 7, must divide
N (the assertion of this sentence is more commonly known as Langrange’s theorem). Since there are r, — 1
elements in G, with exactly 2 poles, and the identity element has no poles, we have

D (rp—1) =2(N —1).
pEP
10



Let O, denote the orbit of p € P. If there are k distinct orbits Oy, ..., Oy in P with choice of representatives
pj € O;, then the above equation can be rewritten as

k
> 10l(rp, = 1) =2N —2.
j=1

By the Orbit-Stabilizer theorem (Lemma 35) one has

k
N
> <N - ) =2N -2
Ty
and so
k
1 ) 2
1l—-—)=2-—.
Since every term in the left hand side is at least 1/2 and the right hand side is bounded below by 1 and

bounded above by 2, we conclude that k € 2,3. It remains to investigate these two cases.

Case 1: k = 2. In this case
1 1 2

1 T9 N
As r; divides NV, one must have that r; = ro = N. Hence G must be the cyclic group Cy.

Case 2: k = 3. In this case
1 1 1

2
r1+r2+r3_1+N>1'
Without loss of generality let 73 > ro > r; > 1. Then we must have r; = 2. As N > 1 we also have that
r3 > 3.

Subcase 2.1: r1 =19 = 2 and r3 > 3. Suppose rz = I. Then we will have N = 2, and so |Gp,| = I.
Hence, if {p,p’} are the poles that makes up Og, then half of the elements of G fixes p, and the other half of
G interchanges p and p’. Consequently the elements of G that fixes p must also fix p’, and they are antipodal
points. It is now clear that in this subcase G corresponds to the dihedral group D;.

Subcase 2.2: 1y =2 and r3 > ro > 3. We observe that we need ro = 3, and that r3 < 5. Hence there are
three possibilities.

o If (r1,72,73) = (2,3,3), then N = 12.

o If (rq,7a,73) = (2,3,4), then N = 24.

o If (rq,7a,73) = (2,3,5), then N = 60.
Let us just analyze the first possibilities as the others are similar. Consider ro. The orbit corresponding to
this has four points, say {¢1,¢2,q3,q4}. As ro = 3, up to labeling we require ¢; to be stabilized by three
elements of G and ¢2, g3, ¢4 to form an orbit via rotations of 27 /3 around an axis through ¢;. This implies
that ¢o, g3, g4 must lie on an equilateral triangle. Applying the same logic by switching out ¢; with the other
q; tells us that in fact ¢, g2, g3, g4 are the vertices of the tetrahedron. Hence any rotation group of the first
possibility is a subgroup of the rotation group of the tetrahedron. But the rotation group of the tetrahedron
has exactly 12 elements by example 23, so this is the only possibility. (]

5. POLYA’S ENUMERATION THEOREM

Notice Burnside’s lemma tells us inequivalent symmetries (such as colorings), but does not tell us how
they are counted. Fortunately there is another powerful result called Pélya’s enumeration theorem. It gives
us more data on our inequivalent symmetries, but is harder to compute. We first need a proposition.

Proposition 41. Let G be a subgroup of the symmetric group &,. Suppose G acts on a finite set S =
{s1,...,8,} with n elements with the action of evample 18. Define the set X° := {functions f : S — X}
for some set X = {c1,ca,...}. For any f € X%, also define the weight of f by

of = [[alf
i>1

11



(a) There is a natural action of G on X° by following: if g € G, f € X°, and s € S, then g - f has
(g-f)(s) = f(g-s).
(b) If f and h are in the same orbit, then zf = x".
(¢) For a weak composition o = (a1, Qa,...) of n, i.e. a1 > g >--- >0 and >, a; =n, define
Co:={f € X%:|f i) = a; for all i}.
Then C,, is stable under the action of G on X, that is, g- f € Cy for every g € G and f € Cy. In
particular, every orbit O € X°/G has O € C,, for some C,,.

Proof. Parts (a) and (c) are left as exercises. For part (b), write f = g - h for some g € G. Observe that G
is in bijection with G;, by lemma 35. Hence

[T el = {s € St fs) = e}
=g -s€8: f(s) =il
=HKsesS:flg-s)=ci=(g9-1)(s)}
=" (el
A warning is that f~!(c;) need not equal h=1(¢;) as sets. O

Definition 42. Preserve the notations in proposition 41. Define the cycle indezx of G to be
_ 1 J1(9) 432(9)
Za(ty,tg,...) = @ ot
geG
where each ji(g) is the number of k-cycles of g. Also define the weight function
Fo(z) = Z 2%,
0exs/G
where z© is the weight =/ for any f € O.
Note we will manipulate polynomial series such as the ones above formally, and call them generating

functions. That is, we will not worry about convergence issues like in analysis. Of course, if we want to do
closed form expressions we can still use Taylor expansion if it works in a nonzero radius of convergence.

Theorem 43 (Pdlya’s Enumeration Theorem). With notations as in definition 42,

n n n
Fo(x) = Z¢g <le,2xf7z:ﬂf’,> )
i=1 =1 =1

Proof. For any a = (a1, as,...) a weak composition of n, let us compute the fixed point for the action
of some g € G on C,. Denote this action by g, For any f € C, to be in Fix(g,), we need the following
conditions:

e all the elements in the orbit of any cycle of w must have the same image under f,

e the color ¢; must appear a; times as f € C,.

Hence
" Jr(9)
| Fix(g. )| = the coefficient of % in H Z ¥ ,
k=1 \i>1
SO
Jk(9)
n
> | Fix(ga)lz* = [T [ D=t
a weak composition k=1 \i>1
Now, summing over all g € G and dividing by |G|,
ik (9)

1 , . 1 =
@szlx(gaﬂx e (> =

geG « geG k=1 \i>1



The left hand side of this equation evaluates to

1 : o 1 , N
a1 2 2| Fixlga)la® = 12 30D [ Fix(ga)le

geG « a ged

= Z ﬁ Z | Fix(gq )|z

geG

Z |CY/G |z (by proposition 36)

Z z© (by proposition 41)
0exs/a

IQ;(x).

while the right hand side is by definition

Jk(9)

T&ZH Zﬁ =Za (mezxf,z:ﬁ,)
=1 =1 =1

geG k=1 \i>1

Looking back, this is exactly what we wanted. 0

Pélya’s enumeration theorem tells us that Fi(z) is the generating function for the number of colorings
under the action of G, which can be computed just by looking at the cycle index. The advantage is that
once we know what G we are dealing with, we simply substitute it into the cycle index and we are done. It
is easy to get back Burnside’s lemma from Pdélya’s enumeration theorem by substituting each z; = 1.

Example 44. Let us look back at example 20. Since G = Dy in this case, by Pdlya’s enumeration theorem,
and noticing that |X| = 3 (so we treat 0 = x4 = x5 = ---) and n = 4 in this case, the generating function
for the number of colorings are

((z1 + 22 + 23)* + 2(21 + 22 + 33)% (2] + 23 + 23)

4
1 )
3 E | | (ac’f + x§ + x§)“(9) =

g€D4 k=1

oo —

+3(2 + 23 + a3) + 22 + 25 + x3))

4 4
= +x?x2+x:{)x3+~~+x2x§+m3.

The advantage of this generating function is that it tells how many many of each coloring there are. For
example the x{ and xoz3 term tells us there is only one coloring of the square with all vertices colored the
first color, or one vertices colored the second and the rest colored with color three. To get back Burnside’s
lemma, simply substitute 1 = o2 = 3 = 1, and we still get the correct count of 21 colorings.

Let us look at some more examples of Pdlya’s enumeration theorem. Three will be outlined with some
details left to the reader, and the remaining two given as exercise.

Example 45. Let us look back at example 25. Say we are interested in the more general question of finding
the number of isomers of the following molecule, where the numbers are to be filled £ number of H and 8 — k
13



number of C'Hj for some fixed k € {0, ...,8}.
2 3

| |
DN
C C C
! ) 5
I N
| |

7 6
The symmetry group is still the subgroup
Vi={1,(1 5)(2 6)(3 7)(4 8),(1 4)(2 7)(3 6)(5 8),(1 8)(2 3)(4 5)(6 7)}
of &g, and the cycle index of V is
Zy(t, t2) = i(t? + 3t3).

By a similar reasoning as example 40, the polynomial we want to look at is
1
Zyv(14+t,1+14%) = 71+ ) +3(1+¢%)*)
=1+ 2z + 102% + 142® + 222" + 142° + 102° + 227 + 2°.

From here we can read off what we want using the coefficients. For example, the number of isomers of
tetramethylnaphthalene is the coefficient of z*, which is 22, agreeing with our computation in example 25.
As another example, there are two isomers of naphthol, which is obtained by filling in the numbers in the
molecule above with seven H one hydroxyl group (OH).

Exercise 46 (Enumerating isomers of alkane). An alkane is a molecule with n number of carbon (C) atoms
and 2n + 2 number of hydrogen (H) atoms such that every carbon atom is joined to exactly four hydrogen
atoms, and every hydrogen atom is joined to exactly one carbon atom. A substituted alkane is an alkane
where a hydrogen atom is replaced by some X.
(a) Let a,, be the number of isomers of substituted alkanes with exactly n carbon atoms, and consider the
generating function
A(x) = ag + a1z + agz? + azx® 4+ - - - .
Show that
Ae) = 5 ((A@)* +3A(@)A(?) + 24(2%),

and ezplain how we can (possibly recursively) compute the values a, using the above relation.

(b) Let b, be the number of isomers of alkanes with exactly n carbon atoms. By considering the cycle
index of &3 or otherwise, set up a recursion to compute the values b,. It may be useful to consider
the generating function B(x) = by + bix + box? + bza® + - - -.

Example 47. A classical application of Pélya’s enumeration theorem is to count the number of necklaces
composed of n beads of two colors, and furthermore find out how many of these necklaces have k beads of the
first color. In this case G = R, since two necklaces are equivalent if they are the same under rotation (not
reflection!). We need to compute Zg(t1,. .., t,) first. It is easy to see that, again letting r := (1 -+ n) € R,
there are only ged(k,n) cycles of length n/ ged(k,n) in ¥ for 1 < k < n. Hence

1 - cd(k,n 1 d 1 n/d
Zo(tisstn) = e gedthny = o 2 e/t =~ D e(d)y”,
k=1 dln d|n
where ¢(d) :={m € {1,...,d} : gcd(m,d) = 1} is called Euler’s totient function. Here we implicitly use the
easy fact that ged(k,n) = g if and only if ged(k/g,n/g) = 1.
14



Since we have two colors, call a color x and the other 1. We will not need a new variable for another
color following the argument completely. Anyway, by Pélya’s enumeration theorem, the polynomial we want
to look at is

Za(l+t, 1412, 14+1t") == ng d)(1 + tHn/d

This already tell us, by substituting ¢ = 1, that the number of necklaces with n beads of two colors is

1 n
dln

To find those necklaces that has k beads of the first color, we need to look at the coefficient of t* in
Za(1+t,1+12,...,1+t"), which is
1 n/d
n Z o(d) (k/d) :
d| ged(k,n)

This is because it suffices to look at those d that divides k, and since d divides n it must divides ged(k, n).
The binomial coefficient is combinatorial observation.

Exercise 48. A graph is a pair of finite sets (V, E) such that E C V x V. Two graphs (V1, E1) and (Va, Es)
are isomorphic if there exists a bijection ¢ : Vi — V4 such that (v,w) € Ey if and only if (p(v), p(w)) € Es.
Classify graphs with at most 5 vertices up to isomorphism, i.e. in the classification no two graphs should be
isomorphic. Include the empty graph (0,0) as well. Do it for more than 5 vertices for more computational
practice.

Example 49. We can use Pélya’s enumeration theorem to give a beautiful identity (which is the third

equation below). For variables 71, -« , 7y, write pg = ZZL 1 r¥. Then
n
mo__ m
H i Z Fs, (r1,...,rp)t™ = Z Zs,, (P15, p)t™.
i=1 m>0 m>0

The left equality is true since 1/(1 — r;t) = 1+ rit + (rit)? + (rit)® + - - -, and the right equality is Pélya’s
enumeration theorem. Also noting that

1 | 1 r2t? 33
=ex n =exp | r; Ny
1—rmt OP\MT T Pty 3

by summing over ¢ we have

t? t*
> Ze (i spa)t" = exp (p1t+ e )

= 2 3

Notice this means that the right hand side gives us the cycle index polynomials of any symmetric group S,,.

Exercise 50. Let k € Z~q. Prove that the number fi(n) of permutations o € &, all of whose cycle lengths
are divisible by k in its cycle factorization, is given by

i 1jk+1

(n—1)!

foln) = if k|n

0 otherwise.
For more examples of applications of Pélya theory, one may refer to the beautifully written book [5]

written by George Pdélya himself together with another collaborator of his.
15



6. CAYLEY’S THEOREM

We have summarized Pélya theory. There is still one question that is theoretically important, but
practically not so. We only did Pdélya’s enumeration theorem over permutation groups. Why not do it for
others? It turns out this is sufficient by the following theorem. For a set G, let us define S¢ to be the set
of all bijective functions from G to G. In particular, a finite group G is isomorphic to a subgroup of &g/
Just like the symmetric group over a finite set, S¢ is a group under function composition as well.

Theorem 51 (Cayley). Fvery group G is isomorphic to a subgroup of S¢, i.e. we can construct an injection
f: G —> B¢ such that f(g+h) = f(g)f(h) for every g,h € G.

Proof. Observe G¢ has a subgroup A := {Ag}4eq, where each Ay : G — G is the left multiplication map
Ag(h) = gh. Each Ay : G — G is a bijection with inverse given by /\g_l(h) = ¢~ 1h, and it is easy to see A is
a subgroup of Gg.

Let us define the map ¢ : G — S¢ by ¢(g) = Ay, which satisfies the property that ¢ (g * k) = ¢(g)@(h)
for every g,h € G. It remains to check ¢ is injective. If ¢(g) = ¢(h) for some g,h € G, then Ay = Ap,. In
particular, g = A\g(1) = Ap(1) = h. O

7. THE FUTURAMA THEOREM

In this section we will apply the idea of the symmetric group to solve a problem which is the underlying
theme of the acclaimed Futurama episode “The Prisoner of Benda”. This theorem was thought up by Ken
Keeler, a writer for Futurama who holds a Ph.D in applied mathematics. He directed the Futurama episode
named above, and according to him a main aim of the episode was to popularize math among young people.

We will now see the Futurama theorem requires no more than manipulation of elements of the symmetric
group. In order to not spoil the episode in case you haven’t watch it, I've rephrased the theorem as below.

Theorem 52 (Futurama). Suppose we have a group of n people, with n € Z>q. FEach person has exactly
one gift, and exchanges gifts with one another pairwise for as many times as they wish. Suppose in addition
that every two person can switch gifts with each other at most once (even if they had different gifts before).
If we add in two extra person, each with a gift, then it is possible to pairwise exchange gifts among these
n + 2 people under the added assumption such that all n + 2 people get back their own gifts.

Proof. The case for n = 0 is trivial. Suppose n > 1. Let {1,...,n + 2} be the set of n + 2 people, and
{1,...,n} be the subset of n people. We translate the statement of the theorem as follow: given o € &,,,
consider it as an element in &, with n + 1 and n + 2 fixed. Then there is a set of pairwise distinct
transpositions {7;}¥_; of &, such that each 7 € {r;}¥_, does not fix both of n + 1 and n + 2, and
TETk—1 - - ToT10 is the identity in &, 2.

Let 0 = o1 - - - g7 be the cycle factorization of ¢ € &,,. Consider one of the o;, with 1 < i <. Without loss
of generality, suppose 0; = (1 2 --- m), where 1 < m < n. This is valid since if o; is a cycle with different
index, reindex the elements in its cycle into the form above. Consider o; to be an element in &,, 45 with n+1
and n + 2 fixed. Now consider the set of transpositions {(n+1 ¢): 1 <g¢g<m}U{(n+2 m),(n+2 1)}.
Let

kKi=m+11n+12)---n+lm—-1)n+2 m)(n+1 m)(n+2 1).
Then we can easily check that k;o; = (n+1 n+2) in &,42. Now letting k := Kikj_1 - Kak1, We see
inductively that ko = (n+1 n+2)! in &,,42, as (n+1 n+ 2) commutes with each o1, ...,0; since they fix
n+1 and n+ 2. Thus if [ is even, multiply « to o to get ko = e in &, 42, and if [ is odd, multiply the chain
of transpositions (n +1 n + 2)k to o instead.

To make sure our definition of k¥ works, we need to check each of its transpositions are pairwise distinct.
But each ; has pairwise distinct transpositions by definition, (n + 1 n + 2) does not appear in &, and
transpositions from two different x; and k; are pairwise distinct too since the corresponding disjoint cycles
o; and o; permutes pairwise distinct elements. U

Note that in the proof of the Futurama theorem, we exchange gifts by “fixing” the gifts and exchange
the two person around instead. This helps us keep track of pairs of people that has already exchanged gifts
with each other so we do not violate the given condition. Also, by showing that introducing two person is
sufficient, this implies introducing more than two person also works.

16



8. THE 100 PRISONERS PROBLEM

The 100 Prisoners Problem is the following problem.

The 100 Prisoners Problem. A crazy warden has thought up a game for 100 prisoners he has. He goes
into an empty room and makes up 100 identical boxes in a row, inside writing each of the 100 prisoners’
(unique) names. Each prisoner is, once at a time, allowed to enter the room and open 50 boxes. After each
prisoner’s turn, the boxes are all closed and the next prisoner comes in, until the last one finishes his turn.
If every prisoner opens the box that has his/her name in it, all are free to go. Else all prisoners gets killed.
The rule of the game is that the 100 prisoners can only have a discussion before the game starts, and no
more communication of any kind is allowed after the game starts.

We aim to find a good strategy for the problem above. Note that choosing the boxes randomly for each
prisoner is not a very good strategy, since each box has a 27! chance of being opened and we open 50 boxes
out of 100, so the probability of survival for each prisoner is

(27159 (1 —271)%0 = 27190 ~ 7,888 . 10731,

which is exactly 1 in 219, an extremely bad chance. There is a strategy that has a survival probability that
is at least 10%° times better, which we state its probability of survival now.

Proposition 53. There exists a strategy for the 100 Prisoners Problem with probability of survival
100 4
1- > - ~0312,
j=51
which is about 1 in 3.207.

Before proving this proposition by giving a strategy for it, we need a lemma.

Lemma 54. Let k and n be positive integers with k < n. The number of k-cycles in &,, is

<Z> (k — 1)L,

Proof. Easy combinatorics exercise. O
It remains to apply lemma 54 in a clever way to prove proposition 53.

Proof of Proposition 53. We describe the strategy first before proving its probability of survival is as claimed.
Without loss of generality, name the prisoners integers 1 to 100, and have the prisoners memorize everyone
else’s names. Also have the prisoners view the boxes in the room as integers 1 to 100 lined up in a row. For
each k € {1,...,100}, when prisoner k goes into the room, he/she will open box k first. If box k has his/her
name in it, the prisoner end the turn. Else the prisoner will see the name of prisoner n; in box k, and the
prisoner will open box n;. The prisoner repeats this procedure until he/she opens a box with his/her name
in it or the 50" box, whichever is earlier.

Next we calculate the probability of survival. Note that the above strategy is equivalent to counting
the number of elements in the symmetric group G1g9 that has each cycle of length at most 50 in its cycle
factorization, since if ¢ € &1g0, then prisoner k chooses the boxes to open in the fashion k, o (k), o2(k),. ..,
so prisoner k does not open the box containing his/her name if and only if k ¢ {c'(k) : | € Z~o}. However,
it is not easy to count the number of elements in G1gg that has each cycle of length at most 50 in its cycle
factorization directly, so we instead count the number of elements m € S99 that has a cycle of length at
least 51 in its cycle factorization, i.e. the probability of death. Note that we can only have one such cycle
in o, else if not then o permutes at least 102 elements, contradiction. Let the cycle in o of length at least
51 be 7. There are (*°°)(r — 1)! ways to choose this cycle by lemma 54, and (100 — 7)! ways to permute the
other 100 — r elements of {1,...,100}, so there are

<1oo> (r — 1)1(100 — 1)l = 100!(r — 1)1(100 — 7)! 100!

T ' r1(100 — 7)! o
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permutations o € G1go that has a cycle of length » € {51,...,100} in its cycle factorization. Summing over
r, the probability of death is thus

100 100
1 100 1 100!
E - D100 —r)! = — — = —.
|6100 | =51 < r >(7ﬂ ) ( T) 100! . r r

=51 r=51

Hence the probability of survival is 1 minus the value above, as claimed. U

Proposition 53 can be generalized in an obvious way. Proving this requires some calculus.

Lemma 55. We have
0.3<1—1log2,

where note that the logarithmic function above is in base e.

Proof. Easy exercise. O

Lemma 56. There exists a constant v € R, called Fuler’s constant, such that

n—oo

n
1

lim —logn—i—i -1 =7
=17

where note that the logarithmic function above is in base e. O

Proof. A calculus exercise. O

Theorem 57. Change the 100 Prisoners Problem to the case of 2n prisoners and n bozxes for some positive
integer n. Then the probability of survival for each prisoner is

2n

1= 2,

j=n+1

-9

1
J
and furthermore this value is always greater than 0.3.

Proof. The first part has an exact same proof as proposition 53. For the second part, note that Z?Zn 1 %

2 . . . .
" L is monotone decreasing if viewed as a

is monotone increasing if viewed as a function in n, so 1 =357 5

function in n. Also note that for any positive integer n,

1 L1 U 1 2n—n
05=1-=1- SRS T [ >1- =0,
J=1+1 J j=n+1 J Jj=n+1 n+ n+
so that the sequence {1 — Z?Zn 41 %}nezw is bounded, and hence converges by the Monotone Convergence

Theorem. Thus it follows by sum of finitely many convergent limits, basic properties of logarithms, and
- 2n 1
monotonicity of {1 — > =}tnez., that

j=n+1 7
2n 1 2n 1
_ Z> 1 _ fl
1= > Sz lm (1= 3 =
j=n+1 j=n+1
2n 1 n 1
:fy—’y+n11_>H;o 1—2;-‘-2;
Jj=1 Jj=1

n—oo n—oo

2n 1 n 1

= lim | —log2n + E - | — lim [ —logn+ E — |+ lim |1-
— ] — J
Jj=1 =
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:nlingo flog2n+;; — flogn+23 + 1723+Zf_

= lim (1 - (log2n —logn))

n—oo
= lim (1 — log Qn)
n— 00 n
=1-1log2.
> 0.3,
where v is Euler’s constant as in lemma 56, and the last inequality is by lemma 55. (]

Using a calculator, 1 —log 2 ~ 0.307, so the lower bound of 0.3 is a very good bound for theorem 57 that
we can prove just by elementary single-variable calculus.

You may wonder if the strategy given in the proof of proposition 53 is optimal, i.e. the probability
of survival for each prisoner is maximal, as that is probably the most important in the prisoners’ mind.
Unfortunately this is true, so the probability of each prisoner surviving in the 100 Prisoners Problem is not
very high. The following exercise explains why.

Exercise 58. Consider an alternative game, still with the 2n prisoners and 2n boxes labeled integers 1 to
2n, as follows. Let prisoner 1 go into the room and open bozes until he/she opens the box with his/her name.
If all boxes are opened after that, the game ends. FElse the warden tells the prisoner with the lowest number
among all the boxes not opened to come in and open bozes until he/she finds the bozes with his/her name
(note the boxes opened by prisoner 1 is still left opened). Continue the procedure until all bozes are opened.
The prisoners all survive if no prisoner opened more than n bozes, else all the prisoners die.

(a) Show that the alternative game terminates, i.e. all 2n boxes will be opened after the k' prisoner for
some 1 <k < 2n.

(b) Show that the alternative game is strategy-neutral, i.e. the probability of survival for each prisoner is the
same no matter what strategy the prisoner use to open the box.

(¢) We can change the 100 prisoners problem by letting them open the box until each prisoner finds the
box with his/her name in it, and that the prisoners win iff no prisoner opened more than 50 bozes.
Clearly this does not change the chance of survival for the prisoners. Show that the alternative game
dominates the modified 100 Prisoner Problem, i.e. every strategy in the 100 Prisoners Problem can be
directly implemented in the alternative game, and furthermore every winning strategy in the 100 Prisoners
Problem is a winning strategy in the alternative game.

(d) Compute the probability of survival for each prisoner in this alternative game.

(e) Conclude that the strategy given in the proof for the 100 Prisoners Problem is optimal.
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