Multizeta values in characteristic p

"I study special values of ζ "

Yao-Rui Yeo

October 21, 2020

Classical case

$$
\zeta\left(s_{1}, \ldots, s_{n}\right)=\sum_{a_{1}>\cdots>a_{n} \geq 1} \frac{1}{a_{1}^{s_{1}} \cdots a_{n}^{s_{n}}} \quad\left(s_{1} \geq 2, s_{i} \geq 1\right)
$$

- Known analytic continuation! (Known functional equation of $\zeta(s)$!)
- Interpretation as periods of "Mixed Tate Motives"
- Actual values of multizeta? Hard.

$$
\begin{aligned}
\zeta(2 n) & =\frac{(-1)^{n+1} 2^{2 n-1} B_{2 n} \pi^{2 n}}{(2 n)!} \\
\zeta(2, \ldots, 2) & =\zeta\left(2^{[n]}\right)=\frac{\pi^{2 n}}{(2 n+1)!}
\end{aligned}
$$

- Algebraic relations? Many known! Here are two simple ones.

$$
\begin{aligned}
\zeta(2,1) & =\zeta(3) \\
\zeta(a) \zeta(b) & =\zeta(a, b)+\zeta(b, a)+\zeta(a+b)
\end{aligned}
$$

- Algebraic independence? Nothing known!

Is $\zeta(3)$ transcendental?

$$
\zeta\left(s_{1}, \ldots, s_{n}\right)=\sum_{\substack{a_{i} \in \mathbb{F}_{q}[\theta] \text { monic } \\ \operatorname{deg} a_{1}>\cdots>\operatorname{deg} a_{n} \geq 0}} \frac{1}{a_{1}^{s_{1}} \cdots a_{n}^{s_{n}}} \quad\left(s_{i} \geq 1\right)
$$

- Unknown analytic continuation! (Unknown functional equation of $\zeta(s)$!)
- Interpretation as periods of "Mixed Carlitz Motives"
- Actual values of multizeta? Hard.

$$
\zeta((q-1) s)=\frac{B_{(q-1) s}}{\Gamma_{(q-1) s+1}} \tilde{\pi}^{(q-1) s}
$$

- Algebraic relations? Not much known. Here is the shuffle relation.

$$
\begin{aligned}
& \zeta(a) \zeta(b)=\zeta(a, b)+\zeta(b, a)+\zeta(a+b) \\
&+\sum_{\substack{i+j=a+b \\
q-1 \mid j}}\left((-1)^{a-1}\binom{j-1}{a-1}+(-1)^{b-1}\binom{j-1}{b-1}\right) \zeta(i, j)
\end{aligned}
$$

- Algebraic independence? Known for $\zeta(s)$ and some families of multizeta!

Algebraic independence of $\zeta(s)$ in characteristic p

Theorem (Chang-Yu 2007)

Each of the values $\zeta(1), \zeta(2), \ldots$ is transcendental over k. Furthermore, the set

$$
\{\tilde{\pi}, \zeta(s): q-1 \nmid s \text { and } p \nmid s\}
$$

is algebraically independent over \bar{k}, and all algebraic relations between the values $\zeta(1), \zeta(2), \ldots$ are generated by the relations

$$
\zeta((q-1) s)=\frac{B_{(q-1) s}}{\Gamma_{(q-1) s+1}} \tilde{\pi}^{(q-1) s}, \quad \zeta(p s)=\zeta(s)^{p}
$$

Key ideas

- Write $\zeta(s)$ as $\mathbb{F}_{q}[\theta]$-linear sums of "polylogarithms".
- Realize the "polylogarithms" as periods of Mixed Carlitz Motives.
- Study motivic Galois groups of these t-motives (exists by Tannakian).

Similar ideas can be used for multizeta values, though we can't achieve a complete description of algebraic independence (yet).

My main work: Generalize these to colored multizeta values (i.e. multizeta values attached with certain Hecke characters).

