1. Let R be a ring and I, J ideals of R. Prove the following

 (a) $I \cap J$ is an ideal of R,

 (b) $I + J = \{a + b | a \in I, b \in J\}$ is an ideal of R,

 (c) $IJ = \{\sum_{i=0}^{n} a_i b_i | a_i \in I, b_i \in J, n \in \mathbb{N}\}$ is an ideal of R.

2. Let $I = (a)$ and $J = (b)$ be two ideals of R. Prove that $I \subset J$ if and only if b divides a. Use this fact and correspondence theorem to classify all the ideals in $\mathbb{Z}/12\mathbb{Z}$.

3. Artin Chapter 11, 3.4 Let $\phi: \mathbb{C}[x, y] \to \mathbb{C}[t]$ defined by $x \mapsto t + 1$ and $y \mapsto t^3 - 1$. Determine the kernel K of ϕ and prove that every ideal I of $\mathbb{C}[x, y]$ that contains K can be generated by two elements.

4. Artin Chapter 11, 3.2 Prove that any ideal of Gaussian integers $\mathbb{Z}[i]$ must contain an integer.

5. Artin Chapter 11, 4.3 a) b) Identify the following rings

 (a) $\mathbb{Z}[x]/(x^2 - 3, 2x + 4)$ (NO solution in terms of $\mathbb{Z}/n\mathbb{Z}$ for this one, please discard this question),

 (b) $\mathbb{Z}[i]/(2 + i)$.

 with $\mathbb{Z}/n\mathbb{Z}$ for some n.

6. Artin Chapter 11, 3.3 a) b) Find generators of the kernels of the following maps:

 (a) $\mathbb{R}[x, y] \to \mathbb{R}$ by $f(x, y) \mapsto f(0, 0)$,

 (b) $\mathbb{R}[x] \to \mathbb{C}$ by $f(x) \mapsto f(2 + i)$.