HW5. Problem 6.
(1) check K is ilosed under mueltiplicapor, and inverse.
For example:

$$
\begin{aligned}
& (12)(34)(23)(14)=(13)(24) \\
& ((12)(34))^{2}=(1)
\end{aligned}
$$

(2) $\left|A_{4} / k\right|=\frac{\left|A_{4}\right|}{|c|}=\frac{12}{4}=3$

So $A_{4} / k \cong C_{3}$.
(3). Aylk has character tasle.

	(1)	a	a^{2}	where
x_{1}	1	1	1	$a=(123)$
x_{2}	1	w	w^{2}	
x_{3}	1	w^{2}	w	$w=e^{\frac{2 \pi i}{3}}=\frac{-1+\sqrt{3} i}{2}$

So Ay has the liftings

\tilde{x}_{1},	\tilde{x}_{1}	\bar{x}_{3}	$A_{k} \rightarrow A_{k} / k \rightarrow \sigma$.	
\bar{x}_{1}	1	1	$(1) p 4)$	(123)
\bar{x}_{2}	1	1	1	$132)$
\tilde{x}_{3}	1	1	w^{2}	w
x_{4}	a_{1}	q_{2}	a_{3}	a_{4}.

We get x_{x} by ortangoaal celations.

$$
\begin{aligned}
& 1^{2}+1^{2}+1^{2}+a_{1}^{2}=1^{2} \Rightarrow a_{1}=3 \\
& a_{2} \cdot a_{1}+1+1+1=0 \Rightarrow a_{2}=-1 \\
& a_{3} \cdot a_{1}+1+w+w^{2}=0 \Rightarrow a_{3}=0 \\
& a_{4} \cdot a_{1}+1+w^{2}+w=0 \Rightarrow a_{4}=0 \\
& x_{x} 3-1
\end{aligned}
$$

