Math 371	Name:
Spring 2020	
Midterm 1	
2/20/2020	
Time Limit: 80 Minutes	ID

"My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this"

Signature _____

This exam contains 9 pages (including this cover page) and 6 questions. Total of points is 70.

- Check your exam to make sure all 9 pages are present.
- You may use writing implements on both sides of a sheet of 8"x11" paper.
- NO CALCULATORS.
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Good luck!

Grade Table (for teacher use only)

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	20	
Total:	70	-

1. (10 points) Define a symmetric bilinear form on \mathbb{R}^3 by $\langle X, Y \rangle = X^T A Y$ where $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$. Find a basis v_1, v_2, v_3 such that $\langle v_i, v_j \rangle = 0$ for all $i \neq j$.

$$V_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$V_2 : \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

2. (10 points) Let $i = \begin{bmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{bmatrix}$ and $j = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ be two elements in SU(2). Determine whether they are in the same conjugacy class. If they are, find $P \in SU(2)$ such that $PiP^{-1} = j$. If not, state the reason.

Trave
$$i = \frac{1}{2} \ln b = 0$$
.

So i , $\int are in the same conjugacy class.

$$Pi = \int P \qquad P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$\int V_1 = \int V_1 V_1, \qquad V_2 = \begin{pmatrix} a \\ b \end{pmatrix}$$

$$\int V_3 = \int V_4 V_1, \qquad V_4 = \begin{pmatrix} a \\ b \end{pmatrix} =$$$

- 3. (10 points) (a) Find an injective group homomorphism from SO(2) to SO(3).
 - (b) Find an injective group homomorphism from O(2) to SO(3).

a)
$$f: 50(2) - 7 5013$$
)
A $(-) f(A) = \begin{bmatrix} 6 & 0 & 0 \\ 0 & A \end{bmatrix}$

 $\chi_{\rho}(\sigma)$ = the number of elements in $\{i \in \{1, 2, \cdots, n\} | \sigma(i) = i\}$.

Charge basis
$$\beta = \beta e_1 \dots e_n g$$
.

 $P_{12}(6) = \int_{0.1}^{0.1} f_{12} f_{21} \dots f_{n} g$
 $f(e_i) = \sum_{k=1}^{n} f_{ki} \cdot e_k = e_{\sigma(i)}$
 $f(e_i) = \int_{0.1}^{n} f_{ki} \cdot e_k = e_{\sigma(i)}$
 $f(e_i) = \int_{0.1}^{n} f_{ki} \cdot e_{ki} = f_{\sigma(i)} f_{\sigma(i)} \dots f_{\sigma(i)}$

5. (10 points) Prove that any rotation in SO(2) can be written as the product of two reflections in O(2).

$$\mathcal{Y}_{o} = \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix}$$

is a notation by angle O.

O can be any real number

6. (20 points) Let W be the space of real trace-zero 2×2 matrices $W = \{A \in M_{2 \times 2}(\mathbb{R}) | trace(A) = 0\}$. W has a basis $\mathbf{B} = (w_1, w_2, w_3)$, where

$$w_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, w_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, w_3 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

- (a) Show that the symmetric bilinear form defined by $\langle A, A' \rangle = \operatorname{trace}(AA')$ has signature (2,1). (Hint: use basis **B**)
- (b) Prove that $P \star A = PAP^{-1}$ defines a linear group operation of $SL(2,\mathbb{R})$ on the space W.
- (c) Use this operation to define a group homomorphism $\varphi: SL(2,\mathbb{R}) \to O_{2,1}$.
- (d) Prove the kernel of this homomorphism is $\{\pm I\}$.

a)
$$\langle w_1, w_2 \rangle = h\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0/1 \\ 10 \end{bmatrix}\right)$$

$$= h \left(\begin{bmatrix} -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0/1 \\ -10 \end{bmatrix}\right)$$

$$= h \left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -0/1 \\ -10 \end{bmatrix}\right)$$

$$= h \left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1/1 \\ -1 \end{bmatrix}\right)$$

$$= h \left(\begin{bmatrix} -1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1/1 \\ -1 \end{bmatrix}\right)$$

$$= h \left(\begin{bmatrix} -1/1 \\ -1/1 \end{bmatrix}, \begin{bmatrix} -1/1 \\ -1/1 \end{bmatrix}\right)$$

$$= h \left(\begin{bmatrix} -1/1 \\ -1/1 \end{bmatrix}, \begin{bmatrix} -1/1 \\ -1/1 \end{bmatrix}\right)$$

Draft 1:

If you use this page and want it looked at, then you must indicate so on the page with the original problem on it. Make sure you label your work with the corresponding problem number.

$$(W_{1}, W_{1}, 7 = h(()) = 2 70$$

 $(W_{2}, W_{2}) = h(()) = 2 70$
 $(W_{3}, W_{3}) = h(()) = 2 70$
 $(W_{3}, W_{3}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h(()) = 2 70$
 $(W_{1}, W_{2}) = h()$

Draft 2:

If you use this page and want it looked at, then you must indicate so on the page with the original problem on it. Make sure you label your work with the corresponding problem number.

$$P*(A) = P(A)p^{-1}$$

$$= CPAp^{-1} = CPAA.$$

().
$$< PAA, PAA'>$$

$$= b + (PAP^{-1}, PA'P^{-1})$$

$$= h + (AA').$$

SO * Offines a group homomorphism

Math 371

02/

Draft 1:

If you use this page and want it looked at, then you must indicate so on the page with the original problem on it. Make sure you label your work with the corresponding problem number.

d):
$$P \in \ker \varphi$$
 $E \supset P \land P^{-1} = A \quad \forall A \in W$.

 $P = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad A = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

then $b = c = 0$.

 $E \supset P \land P^{-1} = A \quad \forall A \in W$.

Midterm 1 - Page 9 of 9

2/20/2020

Draft 2:

If you use this page and want it looked at, then you must indicate so on the page with the original problem on it. Make sure you label your work with the corresponding problem number.

$$\det \left(\begin{array}{c} a & 0 \\ o & d \end{array} \right) = \left(\begin{array}{c} z \end{array} \right)$$

Qd = 1

$$=$$
) $a = d$

a=d= I1 => kerp c/+1/

$$(II)A=A\cdot(II)$$