Math 371	Name:
Spring 2020	
Practice 1	
2/20/2020	
Time Limit: 80 Minutes	ID

"My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this"

Signature _

This exam contains 9 pages (including this cover page) and 6 questions. Total of points is 70.

- Check your exam to make sure all 9 pages are present.
- You may use writing implements on both sides of a sheet of 8"x11" paper.
- NO CALCULATORS.
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Good luck!

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	20	
Total:	70	

Grade Table (for teacher use only)

1. (10 points) Define a symmetric bilinear form on \mathbb{R}^3 by $\langle X, Y \rangle = X^T A Y$ where $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Find a basis v_1, v_2, v_3 such that $\langle v_i, v_j \rangle = 0$ for all $i \neq j$.
$V_{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, V_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, V_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
$\langle V_1, V_1 \rangle = 2$.
$\langle V_1, V_2 \rangle = 1$
< V1, V3 7= 2
$V_{2}' = V_{2} - \frac{\langle V_{1}, V_{2} \rangle}{\langle V_{1}, V_{1} \rangle} V_{1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
$V_{3}' = V_{3} - \frac{\langle V_{1}, V_{3} \rangle}{\langle V_{1}, V_{1} \rangle} V_{1} = \begin{pmatrix} -1 \\ \frac{1}{2} \\ 0 \end{pmatrix}$
$\langle v_{2}', v_{3}' \rangle = (-1) + (-1) + (-1) = -1$
$V_{3}'' = V_{3}' - \frac{\langle V_{3}', V_{2}'' \rangle}{\langle V_{2}'', V_{2}'' \rangle} V_{2}'' = \begin{pmatrix} -/ \\ 0 \\ 1 \end{pmatrix} - \frac{-1}{-2} \begin{pmatrix} -/ \\ 1 \\ 0 \end{pmatrix}$
$= \begin{pmatrix} -\frac{i}{2} \\ -\frac{i}{2} \end{pmatrix}, \begin{cases} V_1, V_2', V_3' \\ fhe \\ He \\ He \\ fill $

1

2. (10 points) Find an injective group homomorphism from U(1) to SU(2).

$$\begin{array}{cccc} U(1) \rightarrow & S(1/2) \\ e^{i\theta} & i \rightarrow & \begin{bmatrix} c^{i\theta} \\ e^{-i\theta} \end{bmatrix} \end{array}$$

3. (10 points) Let $A \in U(n)$ be a unitary matrix. Let v_1 and v_2 be two eigenvectors with distinct eigenvalues λ_1 and λ_2 . Prove that $\langle v_1, v_2 \rangle = v_1^* v_2 = 0$

$$A \vee_{I} = \lambda_{1} \vee_{I}$$

$$A \vee_{2} = \lambda_{2} \vee_{2}$$

$$\leq A \vee_{1}, A \vee_{2} Z = \langle \nabla_{1}, \nabla_{2} Z \rangle$$

$$= \begin{bmatrix} 1 \\ \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{1} \\ - \lambda_{2} \\ - \lambda_{2} \\ - \lambda_{2$$

4. (10 points) Prove that two elements A, B in unitary group U(2) are in the same conjugacy class if and only if trace(A) = trace(B) and det(A) = det(B).

"only if "tr
$$(PAP^{-1}) = tr A$$

 $dut (PAP^{-1}) = dut A$.
"if ". A, B have the same trave
 $und determinant =$
 $A_{i}B$ have the same eigenvalues
 $eigenvector A_{1}$. A_{2}
 $Choose V_{i} \neq 0$, $S.t. Av_{i} = \lambda_{1}v_{1}$.
 $v_{1}' = \frac{1}{\sqrt{ev_{1}, v_{1}}} v_{1}$, $then < v_{i}', v_{i}' > = 1$.
 $Considen (CV_{i})^{\perp}$, $dim = 1$
 $=) (CV_{i})^{\perp} = span(V_{2})$,
 $Then cAv_{2}, Av_{1} = sev_{2}, v_{1} > = 0$.
 $Av_{2} \in [CV_{1}]^{\perp} = span(v_{2}), so Av_{2} = \mu v_{2}$.
 $v_{2}' = \frac{1}{\sqrt{ev_{2}, v_{2}}} v_{2}, then < v_{2}', v_{2}' > = 1$,
 Td .

So
$$P = \begin{pmatrix} v_{1}' & v_{2}' \end{pmatrix} \in V(2)$$
, and $P^{-}AP = \begin{pmatrix} v_{1}' & v_{1} \end{pmatrix}$
Math 371 Practice 1 - Page 6 of 9 2/20/2020
(10 points) Construct a one dimensional group representation $P \cdot C_{n} \rightarrow GL(1)$ of cyclic
group C_{n} of order *n* such that $ker(R) = e$.
P $A P = \begin{bmatrix} \Lambda_{1} \\ \Lambda_{2} \end{bmatrix}$
Q $= \begin{bmatrix} \Lambda_{1} \\ \chi_{1} \end{bmatrix}$, So $A \cdot B$ are in the
Some conjugacy class
 $C_{n} = \frac{74}{NZ} = \frac{7}{M} = m + hZ \mid m \in \mathbb{Z}^{n}$.
R i $C_{n} = \frac{1}{GL(1)} = \binom{\pi}{N}$
R is $Web(-defined be cause)$
if $m_{1} \equiv m_{2} \mod n$, then
 $e^{i\frac{2\pi}{N}} = e^{i\frac{2\pi}{N}}$

R is group homomorphism be cause

$$R(m, tm_2) = e^{i\frac{2\pi}{2}(m, tm_2)} = R(m,). Klm_2)$$

- 6. (20 points) Let V be the vector space of traceless 2×2 real matrices $\{A \in M_{2 \times 2}(\mathbb{R}) | trace(A) = 0\}$.
 - (a) Prove that $\langle A, B \rangle = trace(A^T B)$ defines a positive definite symmetric bilinear form on V.
 - (b) Prove that $P \cdot A = PAP^T$ defines a linear operation of SO(2) on V.
 - (c) Use the previous two parts to define a group homomorphism from SO(2) to SO(3).

.

(d) Find the kernel of this homomorphism.

a)
$$V = \begin{cases} A \in IM \text{ Im } VI = \begin{cases} 0 \\ -1 \end{cases}$$
, $V_1 = \begin{pmatrix} 0 \\ 0 \end{cases}$
 $V_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{cases}$,
 $V_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,
 $V_2 = \begin{bmatrix} 0 \\ 0$

Draft 1:

If you use this page and want it looked at, then you must indicate so on the page with the original problem on it. Make sure you label your work with the corresponding problem number.

1. (A+B/ > PATP.B [. man $p \cdot (CA) = C(P \cdot A)$

< p.A. p.B.> ()= th (PAPT) T (PBPT)) = fr(PATPTPBPT) $= tr(PA^TBP^T) = tr(P^TPA^TB)$

 $= h(A^{T}B) = \langle A, B \rangle$

Math 371

Practice 1 - Page 9 of 9

2/20/2020

Draft 2:

If you use this page and want it looked at, then you must indicate so on the page with the original problem on it. Make sure you label your work with the corresponding problem number.

(, > is preserved by
$$SO(2)$$
 operation
So we obtain: $p(SO(2) \rightarrow O(3))$.
Since $SO(2)$ is $path$ -connected.
 $det (SO(2)) = 1$. $Im (C = SO(3))$.
d) $p \in her p$ iff $pApT = A$, \forall
 $A \in V$.
 $P \cdot [i - 1] = [i - 1] \cdot P$
 $P = [ab]$, $b = c = 0$.
 $= p = t [i - 1]$, check $t = T \in berp$