Math 371 Homework\#2

Due on $2 / 6$ at the beginning of Lecture

1. Prove that $\mathrm{GL}(n, \mathbb{C})$ is isomorphic to a subgroup of $\mathrm{GL}(2 n, \mathbb{R})$.
2. Let $A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 / 2 & \sqrt{3} / 2 \\ 0 & \sqrt{3} / 2 & -1 / 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$ be elements in $\mathrm{SO}(3)$. Are they in the same conjugacy class? If they are, find $P \in \mathrm{SO}(3)$ such that $A=P B P^{-1}$.
3. Prove that $\mathrm{SO}(n)$ is isomorphic to a subgroup H of $\mathrm{SO}(n+1)$ and the quotient set $\mathrm{SO}(n+1) / H$ (i.e. the set of right cosets) has a bijection with n-dimensional sphere S^{n}. Use this fact and induction to show that $\mathrm{SO}(n)$ has dimension $n(n-1) / 2$. (Hint: use the natural action of $\mathrm{SO}(n+1)$ on S^{n} and proposition 6.8.4 in Artin.)
4. Artin, Chapter 9, problem 1.2. Here Lorenz group $\mathrm{O}_{3,1}$ is the group of linear transformations on \mathbb{R}^{4} preserving the symmetric bilinear form with matrix $A=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$, i.e. $\mathrm{O}_{3,1}=\left\{B \in \mathrm{GL}(4, \mathbb{R}) \mid B^{T} A B=A\right\}$.
5. Let G be the set of maps $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ of the form $f(x)=A x+y$ with $A \in \mathrm{O}(3)$ and $y \in \mathbb{R}^{3}$. The multiplication on G is defined by composition of maps.
(a) Prove that G is a group.
(b) Prove that $\mathrm{O}(3)$ is a subgroup of G and it is not normal.
(c) Prove that $\left(\mathbb{R}^{3},+\right)$ is isomorphic to a normal subgroup of G.
6. Prove that the cyclic group C_{n} of n-elements is isomorphic to a subgroup H_{n} of $S O(2)$. Is this H_{n} unique?
7. Artin, Chapter 9, problem 5.6, the first part finding conjugacy classes.
8. Artin, Chapter 9, problem M.4 a), b). You can try c) but it is not required.
