Math 371 Homework#2

Due on 2/6 at the beginning of Lecture

- 1. Prove that $GL(n, \mathbb{C})$ is isomorphic to a subgroup of $GL(2n, \mathbb{R})$.
- 2. Let $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1/2 & \sqrt{3}/2 \\ 0 & \sqrt{3}/2 & -1/2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ be elements in SO(3). Are

they in the same conjugacy class? If they are, find $P \in SO(3)$ such that $A = PBP^{-1}$.

- 3. Prove that SO(n) is isomorphic to a subgroup H of SO(n + 1) and the quotient set SO(n + 1)/H (i.e. the set of right cosets) has a bijection with *n*-dimensional sphere S^n . Use this fact and induction to show that SO(n) has dimension n(n 1)/2. (Hint: use the natural action of SO(n + 1) on S^n and proposition 6.8.4 in Artin.)
- 4. Artin, Chapter 9, problem 1.2. Here Lorenz group $O_{3,1}$ is the group of linear transfor-

mations on \mathbb{R}^4 preserving the symmetric bilinear form with matrix $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$,

i.e.
$$O_{3,1} = \{ B \in GL(4, \mathbb{R}) | B^T A B = A \}.$$

- 5. Let G be the set of maps $f : \mathbb{R}^3 \to \mathbb{R}^3$ of the form f(x) = Ax + y with $A \in O(3)$ and $y \in \mathbb{R}^3$. The multiplication on G is defined by composition of maps.
 - (a) Prove that G is a group.
 - (b) Prove that O(3) is a subgroup of G and it is not normal.
 - (c) Prove that $(\mathbb{R}^3, +)$ is isomorphic to a normal subgroup of G.
- 6. Prove that the cyclic group C_n of *n*-elements is isomorphic to a subgroup H_n of SO(2). Is this H_n unique?
- 7. Artin, Chapter 9, problem 5.6, the first part finding conjugacy classes.
- 8. Artin, Chapter 9, problem M.4 a), b). You can try c) but it is not required.