Math 371 Homework#3

Due on 2/13 at the beginning of Lecture

- 1. Artin, Chapter 6, problem 7.7.
- 2. Artin, Chapter 6, problem 7.8.
- 3. Artin, Chapter 9, problem 3.1.
- 4. Artin, Chapter 9, problem 4.3.
- 5. Artin, Chapter 9, problem 4.8. Here Hermitian matrix means complex square matrix A such that $A^* = A$.
- 6. Let W be the space of real skew-symmetric 3×3 matrices, i.e. $W = \{A \in M_{3 \times 3}(\mathbb{R}) | A = -A^T\}$. Prove that $P * A = PAP^t$ defines an operation of SO_3 on W. Try to find a positive definite symmetric bilinear form on W which is invariant under this operation.
- 7. Let S_3 be the permutation group of three elements $\{1, 2, 3\}$. Denote by $e_1 = (1, 0, 0)^T$, $e_2 = (0, 1, 0)^T$, $e_3 = (0, 0, 1)^T$ the standard basis of \mathbb{C}^3 . Define a linear operation of S_3 on \mathbb{C}^3 by $\sigma e_i = e_{\sigma(i)}$. What is $\sigma(\sum_i a_i e_i)$? Write down the matrix representation R under the standard basis e_1, e_2, e_3 and compute the character χ_R