Math 371 Homework\#3

Due on $2 / 13$ at the beginning of Lecture

1. Artin, Chapter 6, problem 7.7.
2. Artin, Chapter 6, problem 7.8.
3. Artin, Chapter 9, problem 3.1.
4. Artin, Chapter 9, problem 4.3.
5. Artin, Chapter 9, problem 4.8. Here Hermitian matrix means complex square matrix A such that $A^{*}=A$.
6. Let W be the space of real skew-symmetric 3×3 matrices, i.e. $W=\left\{A \in M_{3 \times 3}(\mathbb{R}) \mid A=\right.$ $\left.-A^{T}\right\}$. Prove that $P * A=P A P^{t}$ defines an operation of $S O_{3}$ on W. Try to find a positive definite symmetric bilinear form on W which is invariant under this operation.
7. Let S_{3} be the permutation group of three elements $\{1,2,3\}$. Denote by $e_{1}=(1,0,0)^{T}, e_{2}=$ $(0,1,0)^{T}, e_{3}=(0,0,1)^{T}$ the standard basis of \mathbb{C}^{3}. Define a linear operation of S_{3} on \mathbb{C}^{3} by $\sigma e_{i}=e_{\sigma(i)}$. What is $\sigma\left(\sum_{i} a_{i} e_{i}\right)$? Write down the matrix representation R under the standard basis e_{1}, e_{2}, e_{3} and compute the character χ_{R}
