## Math 371 Homework\#4

Due on $2 / 25$ at the beginning of Lecture

1. Let $R: G \rightarrow \mathrm{GL}(2, \mathbb{C})$ be a matrix representation of finite group. Prove that $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ can not appear in the image of $R$.
2. Let $e_{1} \cdots e_{n}$ be the standard basis of $\mathbb{C}^{n}$. Define the linear operation $\rho$ of $S_{n}$ on vector space $\mathbb{C}^{n}$ by $\sigma e_{i}=e_{\sigma(i)}$. Prove that $\rho$ is not irreducible and write $\mathbb{C}^{n}$ as direct sum of two nontrivial invariant subspaces.
3. Let $V$ be an irreducible representation of $G$ and $\operatorname{dim} V \geq 2$. Prove that

$$
\sum_{g \in G} g v=0
$$

for all $v \in V$.

