Math 371 Homework#4

Due on 2/25 at the beginning of Lecture

- 1. Let $R: G \to \operatorname{GL}(2, \mathbb{C})$ be a matrix representation of finite group. Prove that $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ can not appear in the image of R.
- 2. Let $e_1 \cdots e_n$ be the standard basis of \mathbb{C}^n . Define the linear operation ρ of S_n on vector space \mathbb{C}^n by $\sigma e_i = e_{\sigma(i)}$. Prove that ρ is not irreducible and write \mathbb{C}^n as direct sum of two nontrivial invariant subspaces.
- 3. Let V be an irreducible representation of G and dim $V \ge 2$. Prove that

$$\sum_{g \in G} gv = 0$$

for all $v \in V$.