Math 371 Homework\#6

Due on $3 / 19$ at the beginning of Lecture

1. Prove the intersection of kernels of 1-dimensional irreducible characters gives the commutator subgroup $G^{\prime}=[G, G]$ of G. You can use the following universal property of commutator group. A normal subgroup N of G induces an abelian quotient group G / N if and only if N contains G^{\prime}.
2. From class, we know that the character $\chi_{\text {reg }}$ of regular representation satisfies $\chi_{\text {reg }}(g)=$ 0 if $g \neq e$. There is an inverse of this proposition. Let χ be a character of G and satisfies $\chi(g)=0$ if $g \neq e$. Prove that the corresponding representation is the direct sum of several copies of regular representation, i.e. $\rho \cong n \rho_{\text {reg }}$ for some integer n.
3. Find the character table of dihedral group D_{4}. Here D_{4} is the symmetry group of a square and is generated by x the rotation by $\pi / 2$ and y a reflection. From calculation of $O(2)$, we know $x^{4}=e, y^{2}=e, y x=x^{-1} y$.
4. Let χ be a faithful character of G, i.e. $\operatorname{ker} \chi=\{e\}$. Prove that G is abelian group if and only if all the irreducible components appearing in the irreducible decomposition of χ are 1-dimensional. (Hint: use question 1)
5. Artin chapter 10, 7.4
6. Let G operate on a finite set S and ρ be the induced permutation representation. Prove that the multiplicity of trivial representation ρ_{1} appearing in irreducible representation decomposition of ρ is equal to the number of orbits of this operation.
