Math 371 Homework\#7

Due on $4 / 3$ 11:59pm EST on canvas

1. Artin, Chapter 11, 1.7 (a)

Let U be an arbitrary set and R be the set of subsets in U. Addition and multiplication of elements of R are defined by $A+B=A \cup B-A \cap B$ and $A \cdot B=A \cap B$. Prove that R is a ring.
2. Determine whether the division with reminder $g(x)=f(x) q(x)+r(x)$ exists in $R[x]$ for the following $R, f(x), g(x)$. If it exists, find the $q(x), r(x)$.
(a) $R=\mathbb{Z}, f(x)=2 x^{2}+x+1, g(x)=2 x^{3}+7 x^{2}+4 x+8$.
(b) $R=\mathbb{Z} / 6 \mathbb{Z}, f(x)=2 x+1, g(x)=2 x^{2}+2 x$. (Here the leading coefficient of $f(x)$ is 2 and is not a unit in R, but it is still possible to find such $q(x), r(x)$, but maybe not unique.)
(c) $R=\mathbb{Z} / 6 \mathbb{Z}, f(x)=5 x+1, g(x)=2 x^{2}+2 x$.
3. Let R be a ring and I, J ideals of R. Prove the following
(a) $I \cap J$ is an ideal of R,
(b) $I+J=\{a+b \mid a \in I, b \in J\}$ is an ideal of R,
(c) $I J=\left\{\sum_{i=0}^{n} a_{i} b_{i} \mid a_{i} \in I, b_{i} \in J, n \in \mathbb{N}\right\}$ is an ideal of R.
4. Let $I=(a)$ and $J=(b)$ be two ideals of R. Prove that $I \subset J$ if and only if b divides a. Use this fact and correspondence theorem to classify all the ideals in $\mathbb{Z} / 12 \mathbb{Z}$.
5. Artin Chapter 11, 3.4 Let $\phi: \mathbb{C}[x, y] \rightarrow \mathbb{C}[t]$ defined by $x \mapsto t+1$ and $y \mapsto t^{3}-1$. Determine the kernel K of ϕ and prove that every ideal I of $\mathbb{C}[x, y]$ that contains K can be generated by two elements.
6. Artin Chapter 11, 3.2 Prove that any ideal of Gaussian integers $\mathbb{Z}[i]$ must contain an integer.
7. Identify the ring $\mathbb{Z}[\sqrt{-3}] /(2+\sqrt{-3})$ with $\mathbb{Z} / n \mathbb{Z}$ for some n. Here $\mathbb{Z}[\sqrt{-3}]=\{a+$ $b \sqrt{-3} \mid a, b \in \mathbb{Z}\}$
8. Artin Chapter 11, 3.3 a) b) Find generators of the kernels of the following maps:
(a) $\mathbb{R}[x, y] \rightarrow \mathbb{R}$ by $f(x, y) \mapsto f(0,0)$,
(b) $\mathbb{R}[x] \rightarrow \mathbb{C}$ by $f(x) \mapsto f(2+i)$.

