Math 371 Homework#7

Due on 4/3 11:59pm EST on canvas

1. Artin, Chapter 11, 1.7 (a)

Let U be an arbitrary set and R be the set of subsets in U. Addition and multiplication of elements of R are defined by $A + B = A \cup B - A \cap B$ and $A \cdot B = A \cap B$. Prove that R is a ring.

- 2. Determine whether the division with reminder g(x) = f(x)q(x) + r(x) exists in R[x] for the following R, f(x), g(x). If it exists, find the q(x), r(x).
 - (a) $R = \mathbb{Z}, f(x) = 2x^2 + x + 1, g(x) = 2x^3 + 7x^2 + 4x + 8.$
 - (b) $R = \mathbb{Z}/6\mathbb{Z}$, f(x) = 2x + 1, $g(x) = 2x^2 + 2x$. (Here the leading coefficient of f(x) is 2 and is not a unit in R, but it is still possible to find such q(x), r(x), but maybe not unique.)
 - (c) $R = \mathbb{Z}/6\mathbb{Z}, f(x) = 5x + 1, g(x) = 2x^2 + 2x.$
- 3. Let R be a ring and I, J ideals of R. Prove the following
 - (a) $I \cap J$ is an ideal of R,
 - (b) $I + J = \{a + b | a \in I, b \in J\}$ is an ideal of R,
 - (c) $IJ = \{\sum_{i=0}^{n} a_i b_i | a_i \in I, b_i \in J, n \in \mathbb{N}\}$ is an ideal of R.
- 4. Let I = (a) and J = (b) be two ideals of R. Prove that $I \subset J$ if and only if b divides a. Use this fact and correspondence theorem to classify all the ideals in $\mathbb{Z}/12\mathbb{Z}$.
- 5. Artin Chapter 11, 3.4 Let $\phi \colon \mathbb{C}[x, y] \to \mathbb{C}[t]$ defined by $x \mapsto t + 1$ and $y \mapsto t^3 1$. Determine the kernel K of ϕ and prove that every ideal I of $\mathbb{C}[x, y]$ that contains K can be generated by two elements.
- 6. Artin Chapter 11, 3.2 Prove that any ideal of Gaussian integers $\mathbb{Z}[i]$ must contain an integer.
- 7. Identify the ring $\mathbb{Z}[\sqrt{-3}]/(2+\sqrt{-3})$ with $\mathbb{Z}/n\mathbb{Z}$ for some n. Here $\mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3}|a, b \in \mathbb{Z}\}$
- 8. Artin Chapter 11, 3.3 a) b) Find generators of the kernels of the following maps:
 - (a) $\mathbb{R}[x, y] \to \mathbb{R}$ by $f(x, y) \mapsto f(0, 0)$,
 - (b) $\mathbb{R}[x] \to \mathbb{C}$ by $f(x) \mapsto f(2+i)$.