Math 371 Homework\#8

Due on $4 / 14$

1. Artin Chapter 11, 5.1 Let $f=x^{4}+x^{3}+x^{2}+x+1$ and let α denote the residue of x in the ring $R=\mathbb{Z}[x] /(f)$. Express $\left(\alpha^{3}+\alpha^{2}+\alpha\right)\left(\alpha^{5}+1\right)$ in terms of the basis ($1, \alpha, \alpha^{2}, \alpha^{3}$) of R.
2. Use the Euclidean domain structure described in Proposition 12.2 .5 to divide -4 by $2+i$ in $\mathbb{Z}[i]$, i.e. find $q, r \in \mathbb{Z}[i]$ such that $-4=(2+i) q+r$ and $r=0$ or $\sigma(r)<\sigma(2+i)$. (Remark: the textbook uses a geometric proof and we did a more computational proof in class)
3. Assume a and b are associates in integral domain R. Prove that if a is irreducible, then b is also irreducible.
4. Is $(i-2)$ a maximal ideal in the ring of Gaussian integers $\mathbb{Z}[i]$? Why? (Hint: use the previous homework of how to identify the quotient ring with $\mathbb{Z} / n \mathbb{Z}$)
5. Is $(i+3)$ a maximal ideal in the ring of Gaussian integers $\mathbb{Z}[i]$? Why?
6. Prove that the ring $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain, hence PID. (Hint: use the same idea in the proof for $\mathbb{Z}[\sqrt{-1}]$)
7. Prove that $\mathbb{C}[x, y]$ is not a PID (principal ideal domain). (Hint: consider the ideal (x, y) and prove that it can not be generated by one element. Assume it is generated by one element $f(x, y)$, then try to find the degrees of $f(x, y)$ with respect to x and y if x and y are multiples of $f(x, y)$.)
