Math 371 Homework\#10

Due on $4 / 19$

1. Artin Chapter 11, 8.3 Prove that $\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$ is a field, but $\mathbb{F}_{3}[x] /\left(x^{3}+x+1\right)$ is not a field. Here $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ is a field with p elements.
2. Decide whether or not $x^{4}+6 x^{3}+9 x+3$ is irreducible in $\mathbb{Q}[x]$.
3. Factor the integral polynomial $x^{5}+2 x^{4}+3 x^{3}+3 x+5$ in $\mathbb{F}_{2}[x], \mathbb{F}_{3}[x]$ and $\mathbb{Q}[x]$.
4. Prove that a prime number p can be written as $p=m^{2}+2 n^{2}$ with $m, n \in \mathbb{Z}$ if and only if $x^{2}+2$ has a root in \mathbb{F}_{p}. (In fact, this is true if and only if $p=2$ or $p \equiv 1,3$ $\bmod 8$, proved by Fermat.)
