SAMPLE SOLUTIONS HW 1

HW 1, Problem 8.4.10

Let V denote the vector space of real $n \times n$ matrices. Then $\langle A, B\rangle=\operatorname{trace}\left(A^{t} B\right)$ defines a positive definite bilinear form on V, and find an orthonormal basis for this form.

Proof. First, we check bilinearity. Given matrices A_{1}, A_{2}, we have
$\left\langle A_{1}+A_{2}, B\right\rangle=\operatorname{trace}\left(\left(A_{1}+A_{2}\right)^{t} B\right)=\operatorname{trace}\left(\left(A_{1}^{t}+A_{2}^{t}\right) B\right)=\operatorname{trace}\left(A_{1}^{t} B\right)+\operatorname{trace}\left(A_{2}^{t} B\right)=\left\langle A_{1}, B\right\rangle+\left\langle A_{2}, B\right\rangle$, and for $\lambda \in \mathbb{R}$ and a matrix A, we have

$$
\langle\lambda A, B\rangle=\operatorname{trace}\left((\lambda A)^{t} B\right)=\operatorname{trace}\left(\lambda A^{t} B\right)=\lambda \operatorname{trace}\left(A^{t} B\right)=\lambda\langle A, B\rangle
$$

We use the fact that trace : $M_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R})$ is a linear map, and some basic properties of transposes. This shows linearity in the first component. Similarly, one shows linearity in the second component.

For $A=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in M_{n}(\mathbb{R})$, we have that $A^{t} A=\left(b_{i j}\right)_{1 \leq i, j \leq n}$, where $b_{k k}=\sum_{i=1}^{n} a_{i k}^{2}$. Hence $\operatorname{trace}\left(A^{t} A\right)=\sum_{k=1}^{n} \sum_{i=1}^{n} a_{i k}^{2}$. From this it follows that $\langle\bar{A}, \bar{A}\rangle \geq 0$ for all $A \in M_{n}(\mathbb{R})$, and $\langle A, A\rangle=0$ if and only if $A=0$, showing positive definiteness of the given form.

Next we find an orthonormal basis. Note that $\operatorname{dim}_{\mathbb{R}} M_{n}(\mathbb{R})=n^{2}$ so our basis will have n^{2} elements. A natural guess for a basis for $M_{n}(\mathbb{R})$ is the collection $\left\{e_{i, j}\right\}_{1 \leq i, j \leq n}$ of matrices, where $e_{i, j}$ has 1 in the (i, j) th location, and 0 elsewhere. If one identifies $M_{n}(\mathbb{R})$ with $\mathbb{R}^{n^{2}}$ (as \mathbb{R}-vector spaces), then these $e_{i, j}$'s correspond exactly to the standard basis elements of $\mathbb{R}^{n^{2}}$. Now, given our formula above, one easily computes that $\left\langle e_{i, j}, e_{i, j}\right\rangle=1$, and $\left\langle e_{i, j}, e_{k, l}\right\rangle=0$ if $(i, j) \neq(k, l)$. Hence, the above collection yields an orthonormal basis.

HW 1, Problem 8.4.11

Let W_{1}, W_{2} be subspaces of a vector space V with a symmetric bilinear form. Prove that $(a)\left(W_{1}+\right.$ $\left.W_{2}\right)^{\perp}=W_{1}^{\perp} \cap W_{2}^{\perp},(b) W \subseteq W^{\perp \perp},(c) W_{1} \subseteq W_{2} \Longrightarrow W_{2}^{\perp} \subseteq W_{1}^{\perp}$.

Proof. We first prove (c). Take $x \in W_{2}^{\perp}$. Then $\left\langle w_{2}, x\right\rangle=0$ for all $w_{2} \in W_{2}$ (by definiton). In particular, $\left\langle w_{1}, x\right\rangle=0$ for all $w_{1} \in W_{1}$, since $W_{1} \subseteq W_{2}$. Hence $x \in W_{1}^{\perp}$, and $W_{2}^{\perp} \subseteq W_{1}^{\perp}$, as required.

For (a), we note that $W_{i} \subseteq W_{1}+W_{2}$ for $i=1,2$. By (c), $\left(W_{1}+W_{2}\right)^{\perp} \subseteq W_{i}^{\perp}$ for $i=1,2$, and hence $\left(W_{1}+W_{2}\right)^{\perp} \subseteq W_{1}^{\perp} \cap W_{2}^{\perp}$. For the reverse containment, take any $x \in W_{1}^{\perp} \cap W_{2}^{\perp}$, and any $z \in W_{1}+W_{2}$. We have $z=w_{1}+w_{2}$ for some $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$, and $\left\langle w_{1}+w_{2}, z\right\rangle=$ $\left\langle w_{1}, z\right\rangle+\left\langle w_{2}, z\right\rangle=0$, whence $x \in\left(W_{1}+W_{2}\right)^{\perp}$, and we have $W_{1}^{\perp} \cap W_{2}^{\perp} \subseteq\left(W_{1}+W_{2}\right)^{\perp}$, proving (a).

Finally, for (b), we take any $w \in W$, and any $x \in W^{\perp}$. Then $\langle w, x\rangle=0$, whence $w \in W^{\perp \perp}$. Consequently, $W \subseteq W^{\perp \perp}$, as required.

[^0]
[^0]: Date: February 17, 2020.

