SAMPLE SOLUTIONS HW 1

HW 1, PROBLEM 8.4.10

Let V denote the vector space of real $n \times n$ matrices. Then $\langle A, B \rangle = trace(A^tB)$ defines a positive definite bilinear form on V, and find an orthonormal basis for this form.

Proof. First, we check bilinearity. Given matrices A_1, A_2 , we have $\langle A_1 + A_2, B \rangle = \operatorname{trace}((A_1 + A_2)^t B) = \operatorname{trace}((A_1^t + A_2^t)B) = \operatorname{trace}(A_1^t B) + \operatorname{trace}(A_2^t B) = \langle A_1, B \rangle + \langle A_2, B \rangle$, and for $\lambda \in \mathbb{R}$ and a matrix A, we have

 $\langle \lambda A, B \rangle = \operatorname{trace}((\lambda A)^t B) = \operatorname{trace}(\lambda A^t B) = \lambda \operatorname{trace}(A^t B) = \lambda \langle A, B \rangle.$

We use the fact that trace : $M_n(\mathbb{R}) \to M_n(\mathbb{R})$ is a linear map, and some basic properties of transposes. This shows linearity in the first component. Similarly, one shows linearity in the second component.

For $A = (a_{ij})_{1 \le i,j \le n} \in M_n(\mathbb{R})$, we have that $A^t A = (b_{ij})_{1 \le i,j \le n}$, where $b_{kk} = \sum_{i=1}^n a_{ik}^2$. Hence trace $(A^t A) = \sum_{k=1}^n \sum_{i=1}^n a_{ik}^2$. From this it follows that $\langle A, A \rangle \ge 0$ for all $A \in M_n(\mathbb{R})$, and $\langle A, A \rangle = 0$ if and only if A = 0, showing positive definiteness of the given form.

Next we find an orthonormal basis. Note that $\dim_{\mathbb{R}} M_n(\mathbb{R}) = n^2$ so our basis will have n^2 elements. A natural guess for a basis for $M_n(\mathbb{R})$ is the collection $\{e_{i,j}\}_{1\leq i,j\leq n}$ of matrices, where $e_{i,j}$ has 1 in the (i,j)th location, and 0 elsewhere. If one identifies $M_n(\mathbb{R})$ with \mathbb{R}^{n^2} (as \mathbb{R} -vector spaces), then these $e_{i,j}$'s correspond exactly to the standard basis elements of \mathbb{R}^{n^2} . Now, given our formula above, one easily computes that $\langle e_{i,j}, e_{i,j} \rangle = 1$, and $\langle e_{i,j}, e_{k,l} \rangle = 0$ if $(i,j) \neq (k,l)$. Hence, the above collection yields an orthonormal basis.

HW 1, PROBLEM 8.4.11

Let W_1, W_2 be subspaces of a vector space V with a symmetric bilinear form. Prove that $(a)(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}, (b)W \subseteq W^{\perp \perp}, (c)W_1 \subseteq W_2 \implies W_2^{\perp} \subseteq W_1^{\perp}.$

Proof. We first prove (c). Take $x \in W_2^{\perp}$. Then $\langle w_2, x \rangle = 0$ for all $w_2 \in W_2$ (by definiton). In particular, $\langle w_1, x \rangle = 0$ for all $w_1 \in W_1$, since $W_1 \subseteq W_2$. Hence $x \in W_1^{\perp}$, and $W_2^{\perp} \subseteq W_1^{\perp}$, as required.

For (a), we note that $W_i \subseteq W_1 + W_2$ for i = 1, 2. By (c), $(W_1 + W_2)^{\perp} \subseteq W_i^{\perp}$ for i = 1, 2, and hence $(W_1 + W_2)^{\perp} \subseteq W_1^{\perp} \cap W_2^{\perp}$. For the reverse containment, take any $x \in W_1^{\perp} \cap W_2^{\perp}$, and any $z \in W_1 + W_2$. We have $z = w_1 + w_2$ for some $w_1 \in W_1$ and $w_2 \in W_2$, and $\langle w_1 + w_2, z \rangle = \langle w_1, z \rangle + \langle w_2, z \rangle = 0$, whence $x \in (W_1 + W_2)^{\perp}$, and we have $W_1^{\perp} \cap W_2^{\perp} \subseteq (W_1 + W_2)^{\perp}$, proving (a).

Finally, for (b), we take any $w \in W$, and any $x \in W^{\perp}$. Then $\langle w, x \rangle = 0$, whence $w \in W^{\perp \perp}$. Consequently, $W \subseteq W^{\perp \perp}$, as required.

Date: February 17, 2020.