
SAMPLE SOLUTIONS HW 1

HW 1, Problem 8.4.10

Let V denote the vector space of real n× n matrices. Then 〈A,B〉 = trace(AtB) defines a positive
definite bilinear form on V , and find an orthonormal basis for this form.

Proof. First, we check bilinearity. Given matrices A1, A2, we have

〈A1+A2, B〉 = trace((A1+A2)
tB) = trace((At

1+A
t
2)B) = trace(At

1B)+trace(At
2B) = 〈A1, B〉+〈A2, B〉,

and for λ ∈ R and a matrix A, we have

〈λA,B〉 = trace((λA)tB) = trace(λAtB) = λtrace(AtB) = λ〈A,B〉.
We use the fact that trace : Mn(R) → Mn(R) is a linear map, and some basic properties of
transposes. This shows linearity in the first component. Similarly, one shows linearity in the
second component.

For A = (aij)1≤i,j≤n ∈Mn(R), we have that AtA = (bij)1≤i,j≤n, where bkk =
∑n

i=1 a
2
ik. Hence

trace(AtA) =
∑n

k=1

∑n
i=1 a

2
ik. From this it follows that 〈A,A〉 ≥ 0 for all A ∈ Mn(R), and

〈A,A〉 = 0 if and only if A = 0, showing positive definiteness of the given form.
Next we find an orthonormal basis. Note that dimRMn(R) = n2 so our basis will have n2

elements. A natural guess for a basis for Mn(R) is the collection {ei,j}1≤i,j≤n of matrices, where
ei,j has 1 in the (i, j)th location, and 0 elsewhere. If one identifies Mn(R) with Rn2

(as R-vector
spaces), then these ei,j ’s correspond exactly to the standard basis elements of Rn2

. Now, given our
formula above, one easily computes that 〈ei,j , ei,j〉 = 1, and 〈ei,j , ek,l〉 = 0 if (i, j) 6= (k, l). Hence,
the above collection yields an orthonormal basis. �

HW 1, Problem 8.4.11

Let W1,W2 be subspaces of a vector space V with a symmetric bilinear form. Prove that (a)(W1 +
W2)

⊥ =W⊥1 ∩W⊥2 , (b)W ⊆W⊥⊥, (c)W1 ⊆W2 =⇒ W⊥2 ⊆W⊥1 .

Proof. We first prove (c). Take x ∈ W⊥2 . Then 〈w2, x〉 = 0 for all w2 ∈ W2 (by definiton). In
particular, 〈w1, x〉 = 0 for all w1 ∈ W1, since W1 ⊆ W2. Hence x ∈ W⊥1 , and W⊥2 ⊆ W⊥1 , as
required.

For (a), we note that Wi ⊆ W1 +W2 for i = 1, 2. By (c), (W1 +W2)
⊥ ⊆ W⊥i for i = 1, 2,

and hence (W1 +W2)
⊥ ⊆ W⊥1 ∩W⊥2 . For the reverse containment, take any x ∈ W⊥1 ∩W⊥2 , and

any z ∈ W1 +W2. We have z = w1 + w2 for some w1 ∈ W1 and w2 ∈ W2, and 〈w1 + w2, z〉 =
〈w1, z〉 + 〈w2, z〉 = 0, whence x ∈ (W1 +W2)

⊥, and we have W⊥1 ∩W⊥2 ⊆ (W1 +W2)
⊥, proving

(a).
Finally, for (b), we take any w ∈ W , and any x ∈ W⊥. Then 〈w, x〉 = 0, whence w ∈ W⊥⊥.

Consequently, W ⊆W⊥⊥, as required. �
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