SAMPLE SOLUTIONS HW 2

HW 2, PROBLEM 1

Prove that $\operatorname{GL}_n(\mathbb{C})$ is isomorphic to a subgroup of $\operatorname{GL}_{2n}(\mathbb{R})$.

Proof. Note that \mathbb{C}^n is an \mathbb{R} -vector space in the obvious sense (i.e., given $\alpha \in \mathbb{R}$, $(z_1, \ldots, z_n) \in \mathbb{C}^n$, $\alpha(z_1, \ldots, z_n) = (\alpha z_1, \ldots, \alpha z_n)$). Let $\varphi : \mathbb{C}^n \to \mathbb{R}^{2n}$ be given by sending $(a_1 + ib_1, \ldots, a_n + ib_n) \mapsto (a_1, b_2, \ldots, a_n, b_n)$. One checks immediately that this map is \mathbb{R} -linear and admits the \mathbb{R} -linear inverse $\mathbb{R}^{2n} \to \mathbb{C}^n : (a_1, b_1, a_2, b_2, \ldots, a_n, b_n) \mapsto (a_1 + ib_1, \ldots, a_n + ib_n)$. Hence we have a map $\Phi : \operatorname{GL}_n(\mathbb{C}) \to \operatorname{GL}_{2n}(\mathbb{R})$ given by $\Phi(\psi) = \varphi \circ \psi \circ \varphi^{-1}$. This map is well-defined (i.e., $\varphi \circ \psi \circ \varphi^{-1} \in \operatorname{GL}_{2n}(\mathbb{R})$) since φ and ψ are both isomorphisms of \mathbb{R} -vector spaces.

It remains to show that Φ is an injective group homomorphism. For $\psi_1, \psi_2 \in \mathrm{GL}_n(\mathbb{C})$, we have

$$\Phi(\psi_1 \circ \psi_2) = \varphi \circ (\psi_1 \circ \psi_2) \circ \varphi^{-1} = (\varphi \circ \psi_1 \circ \varphi^{-1}) \circ (\varphi \circ \psi_2 \circ \varphi^{-1}) = \Phi(\psi_1) \circ \Phi(\psi_2),$$

whence Φ is a group homomorphism. If $\Phi(\psi) = id_{\mathbb{R}^{2n}}$, then $\varphi \circ \psi \circ \varphi^{-1} = id_{\mathbb{R}^{2n}}$, whence $\psi = id_{\mathbb{C}^n}$ (by multiplying on the right by φ and on the left by φ^{-1} of both sides of the equality).

HW 2, PROBLEM 6

Prove that the cyclic group C_n of n elements is isomorphic to a subgroup H_n of SO(2). Is this H_n unique?

Proof. Identify SO(2) with $S^1 = \{e^{i\theta} \in \mathbb{C}^{\times} : \theta \in \mathbb{R}\}$ (with group structure induced by that of \mathbb{C}^{\times} , i.e., multiplication of complex numbers) as usual. A copy of C_n inside S^1 is given by the subgroup generated by $e^{2\pi i/n}$ (precisely, what this means is that there is an *injective group homomorphism* $C_n \hookrightarrow S^1$ with image $\langle e^{2\pi i/n} \rangle$, the subgroup generated by $e^{2\pi i/n}$).

Now, if $G \subseteq S^1$ is any other subgroup of order n, then for any $g \in G$, we have $g^n = 1$. If $g = e^{i\theta}$, then $e^{i\theta n} = 1$, so that $n\theta = 2\pi k$ for some integer k. Hence $\theta = 2\pi k/n$, so that $g \in \langle e^{2\pi i/n} \rangle$. Hence $G \subseteq \langle e^{2\pi i/n} \rangle$, and since their cardinalities are equal, these two groups are equal. In other words, we have shown that $\langle e^{2\pi i/n} \rangle$ is the unique subgroup of order n in S^1 (hence in SO(2)).

Date: February 17, 2020.