SAMPLE SOLUTIONS HW 3

HW 3, Artin 9.4.3
Extend the orthogonal representation $\varphi: S U(2) \rightarrow S O(3)$ to a homomorphism $\Phi: U(2) \rightarrow S O(3)$, and describe the kernel of Φ.

Proof. Let V be the set of 2×2 trace zero, skew-Hermitian matrices; i.e., $V=\{A \in S U(2)$: $\left.\operatorname{trace}(A)=0, A=-A^{*}\right\} . V$ is a 3 -dimensional \mathbb{R}-vector space with basis

$$
i=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), j=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), k=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

If $P \in U(2)$ and $A \in V$, then $P A P^{-1}$ also has trace zero, and $\left(P A P^{-1}\right)^{*}=P A^{*} P^{-1}=$ $P(-A) P^{-1}=-P A P^{-1}$ (where we use the fact that $P^{-1}=P^{*}$ for $P \in U(2)$), whence $P A P^{-1} \in V$. This defines an action of $U(2)$ on V, which we denote by $*$, since $I * A=I A I^{-1}=A$, and $(P Q) * A=(P Q) A(P Q)^{-1}=(P Q) A\left(Q^{-1} P^{-1}\right)=P\left(Q A Q^{-1}\right) P^{-1}=P *(Q * A)$.

Hence, we get a map $\Phi: U(2) \rightarrow G L(V)=G L_{3}(\mathbb{R})$ (we identify $G L(V)=G L_{3}(\mathbb{R})$ using the basis $i, j, k)$. It remains to check that the image of Φ lies in $S O(3)$.

Via the isomorphism of \mathbb{R}-vector spaces $\mathbb{R}^{3} \cong V$ via the basis i, j, k, the usual inner product on \mathbb{R}^{3} induces a natural symmetric positive definite bilinear form on V given by $\langle A, B\rangle=a_{1} b_{1}+$ $a_{2} b_{2}+a_{3} b_{3}$, where $A=a_{1} i+a_{2} j+a_{3} k$, and similarly for B. One verifies by a direct calculation that $\langle A, B\rangle=-\frac{1}{2} \operatorname{trace}(A B)$. Now take any $P \in U(2)$. Note that $S O(3)=\{M \in G L(V)$: $\langle M A, M B\rangle=\langle A, B\rangle, \forall A, B \in V$, and $\operatorname{det}(M)=1\}$. Hence to show $\Phi(P) \in S O(3)$ we must show that for all $A, B \in V$, we have:
(i) $\langle\Phi(P) A, \Phi(P) B\rangle=\langle A, B\rangle$, and
(ii) $\operatorname{det}(\Phi(P))=1$.
(i) follows from the following calculation:

$$
\begin{aligned}
\langle\Phi(P) A, \Phi(P) B\rangle & =-\frac{1}{2} \operatorname{trace}((\Phi(P) A)(\Phi(P) B)) \\
& =-\frac{1}{2} \operatorname{trace}\left(P A P^{*} P B P^{*}\right) \\
& =-\frac{1}{2} \operatorname{trace}\left(P A B P^{*}\right) \\
& =-\frac{1}{2} \operatorname{trace}(A B) \\
& =\langle A, B\rangle
\end{aligned}
$$

where we use the fact that $P^{-1}=P^{*}$ since $P \in U(2)$. This shows that $\Phi(P) \in O(3)$, so that $\operatorname{det}(\Phi(P))= \pm 1$. One can show that $U(2)$ is homeomorphic to $S^{3} \times S^{1}$ (this is also exercise 9.3.2 in Artin), and in particular $U(2)$ is connected (since both S^{3} and S^{1} are). We have a continuous group homomorphism $U(2) \xrightarrow{\Phi} O(3) \xrightarrow{\text { det }}\{ \pm 1\}$ (where the set $\{ \pm 1\}$ has the discrete topology. The continuous image of a connected set is connected, whence the image of $U(2)$ is either $\{1\}$ or $\{-1\}$. Since $i d \in U(2)$ mapsto 1 , we conclude that the image is 1 , and hence $\operatorname{det}(\Phi(P))=1$ for all $P \in U(2)$, and Φ has image in $S O(3)$, as required. Finally, since $\varphi: S U(2) \rightarrow S O(3)$ is defined also via a conjugation action on V, it is clear that Φ extends φ.

HW 3, Problem 6

Let $W=\left\{A \in M_{3}(\mathbb{R}): A=-A^{t}\right\}$. Then $P * A=P A P^{t}$ defines an operation (i.e., a group action) of $S O(3)$ on W. Find a positive definite symmetric bilinear form on W which is invariant under this operation.

Proof. To see that $P * A=P A P^{t}$ is a group action, we first note that $P A P^{t}$ is indeed an element of W (i.e., the action is well-defined). For this, note that $\left(P A P^{t}\right)^{t}=P A^{t} P^{t}=P(-A) P^{t}=-P A P^{t}$, whence $P A P^{t} \in W$. Next, we note that $I * A=I A I^{t}=A$, and that given $P, Q \in S O(3)$, we have

$$
(P Q) * A=(P Q) A(P Q)^{t}=(P Q) A\left(Q^{t} P^{t}\right)=P\left(Q A Q^{t}\right) P^{t}=P *(Q * A)
$$

Hence the above operation is indeed an action of $S O(3)$ on W.
Next, we find the form. Every element of W is of the form

$$
M_{a, b, c}:=\left(\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right)
$$

with $a, b, c \in \mathbb{R}$. Using this, one computes that $-\frac{1}{2} \operatorname{trace}\left(M_{a, b, c} M_{a^{\prime}, b^{\prime}, c^{\prime}}\right)=a a^{\prime}+b b^{\prime}+c c^{\prime}$. One checks that this form is a positive definite symmetric bilinear form on W. It is also invariant under the operation since

$$
\begin{aligned}
-\frac{1}{2} \operatorname{trace}\left(\left(P * M_{a, b, c}\right)\left(P * M_{a^{\prime}, b^{\prime}, c^{\prime}}\right)\right) & =-\frac{1}{2} \operatorname{trace}\left(P M_{a, b, c} P^{t} P M_{a^{\prime}, b^{\prime}, c^{\prime}} P^{t}\right) \\
& =-\frac{1}{2} \operatorname{trace}\left(P M_{a, b, c} M_{a^{\prime}, b^{\prime}, c^{\prime}} P^{t}\right) \\
& =-\frac{1}{2} \operatorname{trace}\left(M_{a, b, c} M_{a^{\prime}, b^{\prime}, c^{\prime}}\right),
\end{aligned}
$$

using the fact that $P^{-1}=P^{t}$ for $P \in S O(3)$.

