2.5 Gaussian Elimination
2.6 Inverse
Solve $A\bar{x} = \bar{b}$

Gaussian Elimination

1) $A\# = \begin{bmatrix} A & \bar{b} \end{bmatrix}$

2) $A\# \rightarrow R\# \text{ RE form}$

3) back substitution

Gauss–Jordan Elimination

1) $A\# = \begin{bmatrix} A & \bar{b} \end{bmatrix}$

2) $A\# \rightarrow R\# \text{ RRE form}$

3) back substitution
Example: Gaussian

\[3x_1 - 2x_2 + 2x_3 = 9\]
\[x_1 - 2x_2 + x_3 = 5\]
\[2x_1 - x_2 - 2x_3 = -1\]

1) \[A \neq \begin{pmatrix} 3 & -2 & 2 & 9 \\ 1 & -2 & 1 & 5 \\ 2 & -1 & -2 & -1 \end{pmatrix}\]

2) \[P^{-1} \begin{pmatrix} 1 & -2 & 1 & 5 \\ 3 & -2 & 2 & 9 \\ 2 & -1 & -2 & -1 \end{pmatrix}\]

\[A_{12}(-3) \begin{pmatrix} 1 & -2 & 1 & 5 \\ 0 & 4 & -1 & -6 \\ 0 & 3 & -4 & -11 \end{pmatrix}\]

\[A_{13}(-2) \begin{pmatrix} 1 & -2 & 1 & 5 \\ 0 & 4 & -1 & -6 \\ 0 & 3 & -4 & -11 \end{pmatrix}\]
$A_{32} (-1)$

\[
\begin{bmatrix}
1 & -2 & 1 & 5 \\
0 & 1 & 3 & 5 \\
0 & 3 & -4 & -11
\end{bmatrix}
\]

$A_{23} (-3)$

\[
\begin{bmatrix}
1 & -2 & 1 & 5 \\
0 & 1 & 3 & 5 \\
0 & 0 & -13 & -26
\end{bmatrix}
\]

$M_3 (-\frac{1}{13})$

\[
\begin{bmatrix}
1 & -2 & 1 & 5 \\
0 & 1 & 3 & 5 \\
0 & 0 & 1 & 2
\end{bmatrix}
\]

3) \(x_1 - 2x_2 + x_3 = 5\)

\(x_2 + 3x_3 = 5\)

\(x_3 = 2\)
\begin{align*}
 x_3 &= 2 \\
 x_2 &= -1 \\
 x_1 &= 1
\end{align*}

Unique solution \((1, -1, 2)\)
Example (Gauss–Jordan)

\[\begin{align*}
5x_1 - 6x_2 + x_3 &= 4 \\
2x_1 - 3x_2 + x_3 &= 1 \\
4x_1 - 3x_2 - x_3 &= 5
\end{align*} \]

1) \[A^\# = \begin{bmatrix}
5 & -6 & 1 & 4 \\
2 & -3 & 1 & 1 \\
4 & -3 & -1 & 5
\end{bmatrix} \]

2) \[A_{31}(-1) \quad A_{12}(-2) \quad A_{13}(-4) \]
\[\begin{bmatrix}
1 & -3 & 2 & -1 \\
2 & -3 & 1 & 1 \\
4 & -3 & -1 & 5
\end{bmatrix} \]
\[\begin{bmatrix}
1 & -3 & 2 & -1 \\
0 & 3 & -3 & 3 \\
0 & 9 & -9 & 9
\end{bmatrix} \]
$M_2 \left(\frac{1}{3}\right) \begin{pmatrix} 1 & -3 & 2 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 9 & -9 & 9 \end{pmatrix}$

$A_{23}(-9) \xrightarrow{\text{Gaussian}} \begin{pmatrix} 1 & -3 & 2 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

$A_{21}(3) \xrightarrow{\text{Gaussian}} \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
\[x_1 - x_3 = 2 \]
\[x_2 - x_3 = 1 \]

2x3 system

\[x_1 = 2 + x_3 \]
\[x_2 = 1 + x_3 \]

\[x_1, x_2 \text{ determined by } x_3 \]

\[x_3 \text{ free} \]

\[x_3 = t \]

\[x_1 = 2 + t \]
\[x_2 = 1 + t \]

\[x_3 \text{ is called free variable} \]
The solution set is a line

\[(2+t, 1+t, t)\]

Essentially the intersection of two planes, although we started from a 3x3 system.

Compare with the first example.
X₃ becomes free because there is no leading 1 for X₃.
A column of A (not A^T) without leading 1 is called a free column.

$\#\text{free column} = \#\text{free variable}$

\[n - r \quad \text{dimension of the solution} \]
Example

\[\begin{align*}
X_1 + X_2 - X_3 + X_4 &= 1 \\
2X_1 + 3X_2 + X_3 &= 4 \\
3X_1 + 5X_2 + 3X_3 - X_4 &= 3
\end{align*} \]

\[
\begin{bmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 3 & 1 & 0 & 4 \\
3 & 5 & 3 & -1 & 3
\end{bmatrix}
\]

\[A_{12}(-2)\]

\[A_{13}(-3)\]

\[
\begin{bmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & 1 & 3 & -2 & 2 \\
0 & 2 & 6 & -4 & 0
\end{bmatrix}
\]
\[A_{23}(-2) \rightarrow \begin{bmatrix} 1 & 1 & -1 & 1 & 1 \\ 0 & 1 & 3 & -2 & 2 \\ 0 & 0 & 0 & 0 & -4 \end{bmatrix} \]

The last row

0 \(x_1 \) + 0 \(x_2 \) + 0 \(x_3 \) + 0 \(x_4 \) = -4

0 = -4

Impossible

No solution. We call it inconsistent

\[\text{rank } A = 2 \quad \text{rank } A^\# = 3 \]
The last column is a pivot column

\[\Rightarrow \text{rank } (A^\#) = \text{rank } (A) + 1 \]

In this case we would have

\[
\begin{bmatrix}
 \ast & \ast \\
 0 & 0 & \ldots & 0 & 1
\end{bmatrix}
\]

\(\Rightarrow o = 1 \)

inconsistent.
inconsistent $\iff \text{rank}(A^\#) > \text{rank}(A)$

Theorem 2.5.9 (Significance of rank)

$m \times n$ system $A \bar{x} = \bar{b}$

\[
\begin{align*}
\text{rank}(A) &= r \\
\text{rank}(A^\#) &= r^\#
\end{align*}
\]

1) $r < r^#$ inconsistent.

2) $r = r^#$ consistent

a) unique solution $\iff r = n$

b) infinite solutions $\iff r < n$
\[r = \# \text{ independent equations} \]

\[= \# \text{ independent relations among unknowns} \]

\[n - r = \# \text{ freedoms} \]

EROS preserve rank

(Solution sets are the same)

Row equivalent matrices have the same rank
Definition

\[A \vec{x} = \vec{b} \]

is homogeneous if \(\vec{b} = \vec{0} \)

is nonhomogeneous if \(\vec{b} \neq \vec{0} \)

A homogeneous system is always consistent.

For example, \(\vec{x} = \vec{0} \) is a solution.

\[\text{rank } A = \text{rank } [A \ \vec{0}] \]
Very important

If A is an $m \times n$ matrix
\[r = \text{rank}(A) \]
\[r \leq m \]
\[r \leq n \]

Consider the RE form R
also an $m \times n$
Each row has at most one leading 1
\[r \leq m \]
Each column has at most one leading 1
\[r \leq n \]
Corollary

A homogeneous $m \times n$ system with $m < n$ has an infinite number of solutions.

$r \leq m < n$

2) b) in Theorem 2.5.9

The cases when "=" hold are very special.
If \(r = m \) \(A \) is called full row rank.

If \(r = n \) \(A \) is called full column rank.

full row rank

\[r = m \leq n \]

What can we say about

\[A \vec{x} = \vec{b} \]
\[A^\# = \begin{pmatrix} A & b \end{pmatrix} m \times (n+1) \]

\[r^\# = \text{rank } (A^\#) \leq m = r \]

and \(r \leq r^\# \)

So \(r^\# = r \) for any \(b \)!

Whatever \(b \) is

\[A \tilde{x} = b \]

always has solutions (consistent)

Choose \(b = \begin{bmatrix} 0 \\ \vdots \end{bmatrix}, \begin{bmatrix} 1 \\ \vdots \end{bmatrix} \ldots \)

the standard basis \(\{e_i\} \) of \(\mathbb{R}^m \)
There exist solutions

\[A \alpha_1 = \vec{e}_1 \]
\[A \alpha_2 = \vec{e}_2 \]
\[\vdots \]
\[A \alpha_m = \vec{e}_m \]

Let \(B = [\alpha_1 \alpha_2 \ldots \alpha_m] \) \(n \times m \)

\(AB = [A\alpha_1 \ A\alpha_2 \ldots \ A\alpha_m] \)
\[= [\vec{e}_1 \ \vec{e}_2 \ldots \ \vec{e}_m] \]
\[= I_m \]
Proposition

If \(A \) has \(r = m \), there is an \(n \times m \) matrix \(B \) such that \(AB = I_m \).

On the other hand

If there is \(B \) \(n \times m \) such that \(AB = I_m \),

For any \(\vec{b} \in \mathbb{R}^m \) \(m \)-vector

\[
A(B \vec{b}) = (AB) \vec{b} = I_m \vec{b} = \vec{b}
\]
$B \bar{c}$ is a solution to

$$A \bar{x} = \bar{b}$$

Whatever \bar{b} is

$\text{rank } [A \bar{b}] = \text{rank } A$

$\Rightarrow \text{rank } A = m$

If $AB = I_m$

we call B a right inverse of A.
Proposition

A full row rank \(\Rightarrow\) A has a right inverse

Similarly

\[A_{m \times n} \text{ if there is } C_{n \times m} \text{ such that } \]

\[CA = I_n \]

C is called a left inverse of A
Proposition

A full column rank \iff A has a left inverse.

Proof

$r = n \iff A\overline{x} = \overline{b}$ has at most one solution for any \overline{b}

(\Rightarrow) If $A\overline{x} = A\overline{\beta}$

"\iff" then $\overline{x} = \overline{\beta}$.

If $CA = I_n$ and $A\overline{x} = A\overline{\beta}$

\[\overline{x} = (CA)\overline{x} = C(A\overline{x}) = C(A\overline{\beta}) = (CA)\overline{\beta} = \overline{\beta} \]
"⇒"

1. If \(n = r \)

What's the RRE of \(A \)?

\[
\begin{bmatrix}
1 \\
\vdots \\
0
\end{bmatrix}
= \begin{bmatrix}
I_n \\
0
\end{bmatrix}
\]

Fact: ERO's can be written as left multiplication with some matrices

\[⇒ \quad C' A = \begin{bmatrix}
\frac{1}{n} \\
0
\end{bmatrix} \]

\(C = \) the first \(n \) rows of \(C' \)
Example

\[A = \begin{bmatrix} -3 & 4 \\ 4 & 6 \end{bmatrix} \]

\[B_1 = \frac{1}{9} \begin{bmatrix} -11 & -10 & 16 \\ -7 & 8 & -11 \end{bmatrix} \]

\[B_2 = \frac{1}{2} \begin{bmatrix} 0 & -1 & 6 \\ 0 & 1 & -4 \end{bmatrix} \]

Check

\[B_1 A = I_2 \quad AB_1 ? \]
\[B_2 A = I_2 \quad AB_2 ? \]

Left inverse is not unique. You may have infinitely many.
To Do At Home

Can you produce infinitely many left inverses for the A above from B_1 and B_2?

Hint: \(\frac{1}{2} B_1 + \frac{1}{2} B_2 \) ?

\(\frac{1}{3} B_1 + \frac{2}{3} B_2 \) ?

\(t B_1 + (1-t) B_2 \) ?
<table>
<thead>
<tr>
<th>Has right inverse</th>
<th>No right inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has left inverse</td>
<td>No left inverse</td>
</tr>
<tr>
<td>invertible (inverse unique)</td>
<td>infinitely many left inverse</td>
</tr>
<tr>
<td>$n = m = r$</td>
<td>$m > n = r$</td>
</tr>
<tr>
<td>$n > m = r$</td>
<td>$r < n$</td>
</tr>
<tr>
<td>$r < m$</td>
<td></td>
</tr>
</tbody>
</table>
Most important case

A \(n \times n \) a square

1) If \(A \) has a left inverse then \(A \) has a right inverse (vice versa)

2) In that case left inverse unique, right inverse unique and they are equal

3) In that case we call it the inverse of \(A \)

denote \(A^{-1} \)
Proposition

A n x n square

If \(AB = I\), \(CA = I\)

then \(B = C\)

Proof

\[B = IB = (CA)B\]

\[= C(AB) = CI = C\]

It follows that left/right inverse is unique.
Definition

A n×n square

If there is n×n \(A^{-1} \) such that

\[
A(A^{-1}) = (A^{-1}) A = I
\]

then \(A^{-1} \) is called the inverse of \(A \). \(A \) is called invertible

Invertible = nonsingular

Square but not invertible = singular
How to find A^{-1}?

Recall we found the right inverse B for $AB = I$?

Solve

$$A \beta_1 = \mathbf{e}_1$$
$$A \beta_2 = \mathbf{e}_2$$
$$\vdots$$
$$A \beta_m = \mathbf{e}_m$$

m equations

$$B = [\beta_1 \ \beta_2 \ \cdots \ \beta_m]$$
Fortunately
We can solve these
in equations

\[A \bar{x} = \bar{e}_i \text{ all at once} \]

\[A^\# = \begin{pmatrix} A & I \end{pmatrix} \]

\[= \begin{pmatrix} A & \bar{e}_1 & \bar{e}_2 & \cdots & \bar{e}_n \end{pmatrix} \]

\[\begin{pmatrix} \text{EROs} \end{pmatrix} \]

\[\begin{bmatrix} R & \bar{a}_1 & \bar{a}_2 & \cdots & \bar{a}_n \end{bmatrix} \]

R the RRE for A
\[n = r \implies R = I_n \]

\(\vec{\beta}_i \) solves the equation

\[I \vec{x} = \vec{a}_i \]

\[\implies \vec{\beta}_i = \vec{a}_i \]

Algorithm

\[A \rightarrow \begin{bmatrix} A & I \end{bmatrix} \]

\[\begin{bmatrix} I & A^{-1} \end{bmatrix} \]

\[\text{EROs} \]
Properties of A^{-1}

1. When A, B invertible
 \[
 (A^{-1})^{-1} = A
 \]

2. AB invertible
 \[
 (AB)^{-1} = B^{-1}A^{-1}
 \]

3. A^T invertible
 \[
 (A^T)^{-1} = (A^{-1})^T
 \]

⚠️ You must be sure A is invertible before you write A^{-1}

For any arbitrary matrix B, B^{-1} doesn't make sense!
Theorem

A n x n square

The following are equivalent

a) A is invertible

b) A has a left inverse

c) A has a right inverse

d) $A\vec{x} = \vec{b}$ has a unique solution for every \vec{b}

e) $A\vec{x} = \vec{0}$ has only one solution

f) $r = n$

g) A is row-equivalent to I