Math 312: Problem Set 2

Due date: Wed, Sep 16.

1. Find a row-reduced echelon matrix which is row-equivalent to

\[A = \begin{pmatrix} 1 & -i \\ 2 & 2 \\ i & 1 + i \end{pmatrix} \]

What are the solutions of \(AX = 0 \)?

2. Describe explicitly all \(2 \times 2 \) row-reduced echelon matrices. (Hint: First think about all possible \(r \), the number of non-zero rows.)

3. Consider the system of equations

\[
\begin{align*}
x + y - z &= a \\
x - y + 2z &= b \\
3x + y &= c
\end{align*}
\]

a) Find the general solution of the homogeneous equation.

b) If \(a = 1 \), \(b = 2 \), \(c = 4 \), then a particular solution of the inhomogeneous equation is \(x = 1 \), \(y = 1 \), \(z = 1 \). Find the most general solution of these inhomogeneous equations.

c) If \(a = 1 \), \(b = 2 \), and \(c = 3 \), show these equations have no solution.

4. Show that the system

\[
\begin{align*}
x_1 - 2x_2 + x_3 + 2x_4 &= 1 \\
x_1 + x_2 - x_3 + x_4 &= 2 \\
x_1 + 7x_2 - 5x_3 - x_4 &= 3
\end{align*}
\]

has no solution.

5. a) If \(A := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) and \(B := \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \), compute \(AB \) and \(A^{10} \).

b) Use a), find a \(2 \times 2 \) matrix \(A \) so that \(A^{10} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \).
6. Let

\[
A = \begin{pmatrix}
1 & 2 & 1 & 0 \\
-1 & 0 & 3 & 5 \\
1 & -2 & 1 & 1
\end{pmatrix}.
\]

Find a row-reduced echelon matrix \(R \) which is row-equivalent to \(A \) and an invertible \(3 \times 3 \) matrix \(P \), such that \(R = PA \).

7. Let

\[
A = \begin{pmatrix}
1 & -1 & 2 \\
3 & 2 & 4 \\
0 & 1 & -2
\end{pmatrix}.
\]

Use elementary row operations to discover whether it is invertible, and to find the inverse in case it is.