Math 312: Problem Set 8

Due date: Nov 9, Mon. Turn in homework in class.

1. Let T be a linear operator on \mathbb{R}^3 which is represented relative to the standard basis by the matrix

$$
\begin{pmatrix}
-9 & 4 & 4 \\
-8 & 3 & 4 \\
-16 & 8 & 7
\end{pmatrix}
$$

a) Find out all eigenvalues of T.

b) Find a basis consisting of eigenvectors.

c) Show that T can be diagonalizable.

2. Let A be an arbitrary 3×3 matrix over the field of complex numbers. We form the matrix $xI - A$ with polynomial entries, the i,j entry of this matrix being the polynomial $\delta_{ij}x - A_{ij}$. Here δ_{ij} is 1 if $i = j$, and otherwise 0. The characteristic polynomial is $f = \det(xI - A)$. Show that f is a monic polynomial of degree 3. (I have proved this in class. This exercise asks you to write a complete proof for 3×3 case.)

3. Suppose A is a 2×2 matrix

$$
\begin{pmatrix}
2 & 3 \\
-1 & 1
\end{pmatrix}
$$

a) Let T be the linear operator on \mathbb{R}^2 represented by the matrix A relative to the standard basis of \mathbb{R}^2. Find all eigenvalues of T. Is T diagonalizable?

b) Let $T_{\mathbb{C}}$ be the linear operator on \mathbb{C}^2 represented by the matrix A relative to the standard basis of \mathbb{C}^2. Find all eigenvalues of $T_{\mathbb{C}}$. Is $T_{\mathbb{C}}$ diagonalizable? (Note the fields are different in a) and b).)

4. Let T be a linear operator on the n-dimensional vector space V, and suppose that T has n distinct eigenvalues. Prove that T is diagonalizable.

5. Say a square matrix A has the property that $A^3 - A = 0$. What are the possible eigenvalues of A? Justify your answer.
6. Consider $M = \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix}$ as a matrix over real numbers \mathbb{R}. For which real numbers a and b can M be diagonalized? Justify your response.

7. Let A and B be $n \times n$ matrices over the field F. Prove that if $(I - AB)$ is invertible, then $(I - BA)$ is also invertible and the inverse is

$$(I - BA)^{-1} = I + B(I - AB)^{-1}A$$

8. Use the problem above to prove that, if A and B are $n \times n$ matrices over the field F, then AB and BA have precisely the same eigenvalues in F. (Hint. Use the above theorem, you can show that if λ is not an eigenvalue of AB, then it is not an eigenvalue of BA either, and vice versa.)