1

Let T be a linear operator on \mathbb{R}^3 represented relative to the standard basis by the matrix

$$
\begin{pmatrix}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 2
\end{pmatrix}
$$

a) Find all the eigenvalues of T

b) Find a basis consisting of eigenvectors of T.

c) What is the matrix representing T relative to the basis you found in b)?
Show that the determinant of

$$\begin{pmatrix}
bc & b + c & 1 \\
ca & c + a & 1 \\
ab & a + b & 1
\end{pmatrix}$$

is \((a - b)(b - c)(c - a)\).
Let A be a 3×3 complex matrix. Suppose the characteristic polynomial for A is $(x - 2i)x^2$.

a) Find all possible minimal polynomials for A.

b) Classify such a matrix up to similarity by their Jordan forms.
Let A be the following 3×3 matrix. Find the Jordan form J for A, and the invertible matrix P such that $P^{-1}AP = J$.

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
Let A be the following 4×4 matrix. Find the Jordan form J for A, and the invertible matrix P such that $P^{-1}AP = J$.

$$A = \begin{pmatrix}
7 & 1 & 2 & 2 \\
1 & 4 & -1 & -1 \\
-2 & 1 & 5 & -1 \\
1 & 1 & 2 & 8
\end{pmatrix}$$