Aug 31 Lecture 2
Recall the example
\[\begin{align*}
&2x_1 - x_2 + x_3 = 0 \\
&x_1 + 3x_2 + 4x_3 = 0
\end{align*} \]

Why can we solve an equation this way?
The solutions for \(x \) are also the solutions for
\[\begin{align*}
&x_1 + x_3 = 0 \\
&x_1 + x_3 = 0
\end{align*} \]

This is because \(x_2 + x_3 \) is a linear combination of equations in \(x \).
\[x_2 + x_3 = -\frac{1}{7} \left(2x_1 - x_2 + x_3 \right) \\
\quad + \frac{2}{7} \left(x_1 + 3x_2 + 4x_3 \right) \]

\[x_1 + x_3 = \frac{3}{7} \left(2x_1 - x_2 + x_3 \right) \\
\quad + \frac{1}{7} \left(x_1 + 3x_2 + 4x_3 \right) \]

In general,

\[
\begin{aligned}
A_{11} x_1 + \cdots + A_{1n} x_n &= y_1 \\
\vdots &\\
A_{m1} x_1 + \cdots + A_{mn} x_n &= y_m
\end{aligned}
\]

If we have another equation

\[
\begin{aligned}
c_1 (A_{11} x_1 + \cdots + A_{1n} x_n) + \cdots \\
+ c_m (A_{m1} x_1 + \cdots + A_{mn} x_n)
\end{aligned}
\]

\[= c_1 y_1 + \cdots + c_m y_m \]

then any solution of \(\star \) is also a solution of
If
\[x \neq 0 \]
\[
\begin{align*}
B_1 x_1 + \ldots + B_{1n} x_n &= z_1 \\
B_{k1} x_1 + \ldots + B_{kn} x_n &= z_k
\end{align*}
\]
Each
\[
B_1 x_1 + \ldots + B_{kn} x_n = z_i
\]
\[1 \leq i \leq k \]
is a linear combination of equations in \(x \).

Then any solution of \(x \) is a solution of \(xx \).

If on the other hand, each equation in \(x \)
\[
A_{11} x_1 + \ldots + A_{1n} x_n = y_i
\]
\[1 \leq i \leq m \]
is also a linear combination of equations in **
then any solution of ** is also a solution of *.

In this case (= both hold) *
and ** have the same solutions.

To summarize this condition,
we call * and ** are equivalent.
Definition.
We have two systems of linear equations \(\star \) and \(\star \star \).
They are called equivalent, if each equation in \(\star \) is a linear combination of equations in \(\star \star \) and vice versa.

Theorem:
Equivalent system of linear equations have exactly the same equations.
1.3 Matrices and Elementary Row Operations

How to solve a system of linear equations?

Find an equivalent system of linear equations that is of a very simple form.

To do it more effectively, we use matrices.
\[
\begin{align*}
\begin{cases}
A_{11} x_1 + \ldots + A_{1n} x_n &= y_1 \\
\quad & \quad \\
A_{m1} x_1 + \ldots + A_{mn} x_n &= y_m
\end{cases}
\end{align*}
\]

Rewrite it as

\[
A \bar{x} = \bar{y}
\]

for

\[
A = \begin{pmatrix}
A_{11} & \ldots & A_{1n} \\
\vdots & \ddots & \vdots \\
A_{m1} & \ldots & A_{mn}
\end{pmatrix}_{m \times n}
\]

\[
\bar{x} = \begin{pmatrix}
x_1 \\
\vdots \\
x_n
\end{pmatrix}_{n \times 1 \text{ matrix}}
\]

\[
\bar{y} = \begin{pmatrix}
y_1 \\
\vdots \\
y_m
\end{pmatrix}_{m \times 1 \text{ matrix}}
\]
For any $m \times n$ matrix A we apply 3 operations called elementary row operations.

1. Multiply one row of A by a non-zero number $C \in F$.

2. Replace row r by row r plus C times row s, $s \neq r$.

3. Interchange two different rows.

Regard A as an $m \times n$ matrix as m rows of vectors.
These operations are invertible:

\[A \rightarrow A' \rightarrow A \]

\[\text{row } r \times c \]

\[A \rightarrow A' \rightarrow A \]

\[\text{row } r - c \times \text{rows} \]

\[A \rightarrow A' \rightarrow A \]

(3)

Definition:

A and B are m x n matrices over F. A and B are row-equivalent, if B is obtained from A by a finite sequence of elementary row operations.
Remark.

In this case, A is also obtained from B by a finite sequence of elementary row operations. That's why I say A and B are equivalent. This is an equivalence relation.
Theorem:

If A and B are row-equivalent matrices, then the corresponding homogeneous system of linear equations

$$A\overline{x} = 0 \quad B\overline{x} = 0$$

are equivalent.

Why? We only need to check for each elementary row operation, $A_k \rightarrow A_{k+1}$.

The rows of A_k are linear combination of rows of A_{k+1} and vice versa.