Oct 28

Computing determinants

Three ways

1. \[\det A = \sum_{\sigma \in S_n} \text{sgn}(\sigma) A_{\sigma(1)} A_{\sigma(2)} \ldots A_{\sigma(n)} \]

2. Cofactor formula

3. Simplify the matrix by row operations/column operations

 \[\Rightarrow \text{ upper triangular} \]

 \[\rightarrow \text{ lower triangular matrices} \]

Use 1)
\[\det \begin{pmatrix} a_1 & \star & \cdots & \star \\ \vdots & & \ddots & \vdots \\ 0 & & & a_n \end{pmatrix} = a_1 \cdots a_n \]

\[= \det \begin{pmatrix} a_1 & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_n \end{pmatrix} \]

Example:

\[\det \begin{pmatrix} 1 & t & t^2 \\ t & 1 & t \\ t^2 & t & 1 \end{pmatrix} \]

= operation ii) \[\det \begin{pmatrix} 1-t^2 & 0 & 0 \\ t & 1-t^2 & t \end{pmatrix} \]

= \[\det \begin{pmatrix} 1-t^2 & t & 0 \\ 0 & 1-t^2 & 0 \\ 0 & 0 & t \end{pmatrix} \]
\[\text{cofactor} \quad (1 - t^2) \det \begin{pmatrix} 1 & 0 \\ t & 1 + t^2 \end{pmatrix} \]

\[= (1 - t^2)(1 - t^2) \]

\underline{Conclusion}

Since \(\det A = \det A^t \)

You can also use column operation and expansion of cofactor of rows.
An \(nxn \) matrix \(A \) over \(\mathbb{C} \), the field of complex numbers, is said to be unitary if

\[
A \cdot A^* = I \quad (A^* = A^t)
\]

2f \(A \) is unitary, show that

\[
|\det A| = 1
\]

Proof.

Since \(\det A \)

\[
= \sum_{\sigma \in S_n} \text{sgn}(\sigma) A_{1,\sigma(1)} \cdots A_{n,\sigma(n)}
\]

\[
= \frac{1}{\det A} \left(\sum_{\sigma \in S_n} \text{sgn}(\sigma) A_{(1),\sigma(1)} \cdots A_{n,\sigma(n)} \right)
\]

\[
= \frac{1}{\det A}
\]
det \ A^* = \ det \ \bar{A}^t \\
= \ det \ \bar{A} \\
= \ \frac{\det \bar{A}}{\det A}

\text{Since} \quad AA^* = 1

1 = \ det \ I = \ det \ AA^* \\
= \ det A \ det A^* \\
= \ (\det A) (\det A) \\
= \ |\det A|^2

\text{Since} \quad |\det A| \geq 0

|\det A| = 1
Example: Let n be an even number. Consider an \(n \times n \) matrix \(A \), such that all entries on the diagonal are even integers, all off diagonal are odd integers. Show that \(A \) is invertible as a matrix over \(\mathbb{R} \).

Proof: We want to show that \(\det A \) is an odd number, thus not zero.

Consider
\[\det A = \sum_{\sigma \in S_n} \mathrm{sgn}(\sigma) A_{\sigma(1)} \cdots A_{\sigma(n)} \]

We know that if
\(\sigma \) fixes some element
\(i \in \{1, \ldots, n\} \)

\(\sigma(i) = i \)

then \(A_{\sigma(i)} \) is even

and \(\mathrm{sgn}(\sigma) A_{\sigma(1)} \cdots A_{\sigma(n)} \)

is even.

Otherwise if \(\sigma \) does not fix any element, all \(A_{\sigma(i)} \) are off diagonal

\(\mathrm{sgn}(\sigma) A_{\sigma(1)} \cdots A_{\sigma(n)} \) is odd.
If a permutation does not fix any element, i.e.,

\[\sigma(i) \neq i \text{ for any } i \]

it is called a derangement.

Example

\[\begin{align*}
\text{fix} & \ 1 \ 2 \ 3. \\
\sigma & = (1 \ 2) \\
\sigma & = (2 \ 1)
\end{align*} \]

\[\begin{align*}
\text{fix} & \ 1 \ 2 \ 3. \\
\sigma & = (1 \ 3 \ 2) \\
\sigma & = (2 \ 1 \ 3) \\
\sigma & = (3 \ 2 \ 1)
\end{align*} \]

\[D_n \ (\text{or } !n) = \# \text{ of derangements in } S_n. \]

How to compute \(!n \)?
$D_2 = 1 \iff \text{odd}$

$D_3 = 2 \iff \text{even}$

Lemma For $n \geq 3$

$$D_n = (n-1)D_{n-1} + (n-1)D_{n-2}$$

Proof: Let 6 be a derangement

$$6(1) = i \neq 1$$

So i could be $2, \ldots, n$

$(n-1)$ choices

For remaining numbers, rearrange them

$$i, 2, \ldots, (i-1), i+1, \ldots, n$$

6

$$i, 2, \ldots, (i-1), i+1, \ldots, n.$$
There are two cases

Either \(\delta(i) \neq 1 \)

\[
\begin{align*}
 i, & \quad 2, & \quad \ldots & \quad n \\
 \downarrow & & & \downarrow \\
 1, & \quad 2, & \quad \ldots & \quad n
\end{align*}
\]

\(\delta \) is not allowed

There are \(D_{n-1} \) of these.

Or \(\delta(i) = 1 \)

\[
\begin{align*}
 i, & \quad 2, & \quad \ldots & \quad n \\
 \downarrow & & & \downarrow \\
 1, & \quad 2, & \quad \ldots & \quad n
\end{align*}
\]

There are \(D_{n-2} \) of these

\[D_n = (n-1) (D_{n-1} + D_{n-2}) \]
Lemma

\(D_n \) is even if \(n \) odd

\(D_n \) is odd if \(n \) even

Proof

\(n = 2 \) \(\Rightarrow D_n \) odd

\(n = 3 \) \(\Rightarrow D_n \) even

Assume \(n = 2k \) \(\Rightarrow D_{2k} \) odd

\(n = 2k+1 \) \(\Rightarrow D_{2k+1} \) even

Then \(D_{2k+2} = (2k+1)(D_{2k} + D_{2k+1}) \)

\(\uparrow \)

odd \quad odd

is odd

\(D_{2k+3} = (2k+2)(D_{2k+2} + D_{2k+1}) \)

\(\uparrow \)

even

is even
By induction, the lemma is proved.

Now if \(n \) is even, \(D_n \) is odd

\[
\det A = \sum_{6 \in S_n} \text{sgn}(6) A_{6(1)} \ldots A_{6(n)}
\]

\[
= \sum_{\text{even}} + \sum_{\text{odd}}
\]

Add odd terms of odd numbers

\[
\Rightarrow \text{odd}
\]

Therefore \(\det A \) is odd \(\neq 0 \)

It follows that \(A \) is invertible because we are over \(\mathbb{R} \).