April 19

NTU Game

Nash Bargaining model

\lambda - transfer
Recall
Nash Bargaining model
Given \((u^*, v^*) \in S\)
try to maximize
\((u - u^*)(v - v^*)\)
The slope of \((u - u^*)(v - v^*)\)
at a point \((\bar{u}, \bar{v})\)
is \[
\frac{dv}{du} = -\frac{\frac{\partial f}{\partial u}}{\frac{\partial f}{\partial v}} = -\frac{\bar{v} - v^*}{\bar{u} - u^*}
\]
2.

\[S = \{ (x, y) \mid (x-2)^2 + 4(y-1)^2 \leq 8 \} \]

\((u^*, v^*) = (2, 1)\)

\((\bar{u}, \bar{v}) ?\)

The boundary is

\[f(x, y) = (x-2)^2 + 4(y-1)^2 - 8 = 0 \]

\[x \geq 2 \quad y \geq 1. \]

\[\frac{\partial f}{\partial x} = 2(x-2) \quad \frac{\partial f}{\partial y} = 8(y-1) \]
\[
\frac{y-1}{x-2} = -\frac{d}{dx} = a \frac{\Delta x}{\Delta y} = \frac{2(x-2)}{8(y-1)}
\]

\[
\delta(y-1)^2 = 2(x-2)^2
\]

Moreover,

\[
(x-2)^2 + 4(y-1)^2 = 8
\]

\[
(x-2)^2 = 4 \\
(y-1)^2 = 1 \\
x \geq 2 \quad y \geq 1 \\
\overrightarrow{\text{u}} = (x, y) = (4, 2)
The previous example assumes the boundary is smooth, so the boundary is tangent with
\[(u-u^*)(v-v^*) = c\]
for some \(c\).

What if the boundary is not smooth?
Example

NTU Game

\[
\begin{pmatrix}
(4, 3) & (0, 0) \\
(2, 2) & (1, 4)
\end{pmatrix}
\]

\[\left(u^*, u^* \right) = (0, 0) \quad \left(1/4 \right)\]

The Pareto optimal boundary is
If we want the boundary tangent to \(uu = c \) for some \(c \).

The slope of the tangent line is \(-\frac{1}{3}\) \(v = -\frac{1}{3}u + \frac{13}{3} \).

The intersection of

\[
\begin{align*}
v &= \frac{1}{3}u \\
v &= -\frac{1}{3}u + \frac{13}{3}
\end{align*}
\]
The point is outside the feasible set \(S \).

That means in the interval

\[(1, 4) \rightarrow (4, 3)\]

\(uv\) is getting bigger as \(\rightarrow (4, 3)\).

Therefore \((\bar{u}, \bar{v}) = (4, 3)\)
The λ-transfer approach.

Axiom 4 is controversial.

Also we need additional input, the threat point (w^+, v^+)

NTU: utilities cannot be transferred.

But let's pretend that they can be transferred but there is an exchange rate $\lambda \leftarrow\text{unknown}$. $\lambda > 0$
That means:

Player I 1 unit

Player II 1 unit

For example I use $ US D

II uses RMB

I loses 1

\[\Rightarrow II \text{ increase } \lambda = 6.5 \]

Then we pretend that we solve a TU game

with \((\lambda A, B)_{\lambda > 0}\)
\[\sigma(\lambda) = \max_{i,j} \lambda a_{ij} + b_{ij} \]

\[\delta(\lambda) = \text{val}(\lambda A - B) \]

The TU solution

\[\left(\frac{\sigma(\lambda) + \delta(\lambda)}{2}, \frac{\sigma(\lambda) - \delta(\lambda)}{2} \right) \]

\[\rightarrow \text{original game} \]

\[\left(\frac{\sigma(x) + \delta(x)}{2\lambda}, \frac{\sigma(x) - \delta(x)}{2} \right) \]

Of course we don't know what \(\lambda \) is.
But if

$$\bar{y}(\lambda) = \left(\frac{\sigma(\lambda) + \delta(\lambda)}{2}, \frac{\sigma(\lambda) - \delta(\lambda)}{2} \right)$$

is in the NTU feasible set, then we don't need to make a utility transfer. We can use it as a NTU solution.

Now, there is a unique \(\lambda^* \), called \(\lambda^* \), such that \(\bar{y}(\lambda^*) \) is in the NTU
feasible set.
Then we use $\bar{F}(\lambda^*)$ as the NTU solution.
This λ^* is called the equilibrium exchange rate.

How to find λ^*?
The general case is too complicated.
Simple case:

A and -B both have saddle points in the same position in the matrix.

In NTU game, this is called fixed threat point game.

For any \(\lambda \), \(\lambda A - B \) has a saddle point in the same position. This is the threat point.
Then we actually have two choices.

Knowing the threat point $(v^*, v^*) \rightarrow$ Nash model.

We will see that the solution given by the Nash model is the λ-transfer solution.
Example

\[
\begin{pmatrix}
-1 & 1 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 3 \\
3 & -1
\end{pmatrix}
\]

\[
A = \begin{pmatrix}
-1 & 1 \\
0 & 3
\end{pmatrix}
\]

\[
-B = \begin{pmatrix}
-1 & -3 \\
0 & 1
\end{pmatrix}
\]

Saddle point

For any \(\lambda > 0 \)

\[
\lambda A - B = \begin{pmatrix}
-\lambda - 1 & \lambda - 3 \\
0 & 3\lambda - 1
\end{pmatrix}
\]

has a saddle point
So \((0,0)\) is the threat point \((u^*, v^*) = (0,0)\)

Recall the Nash solution

The slope of the tangent line at \((\bar{u}, \bar{v})\) is \(-\) slope of \((0,0)\) to \((\bar{u}, \bar{v})\)

\[= - \frac{\bar{v}}{\bar{u}}\]
\[A \rightarrow \lambda A \]

means \(u \rightarrow \lambda u \)

Assume we scale by

\[\lambda^* = \frac{\overline{u}}{u} \]

\[(\overline{u}, \overline{v}) \rightarrow (\lambda^* \overline{u}, \overline{v}) \quad \parallel \]

\[(\overline{v}, \overline{v}) \]

The slope of the tangent line becomes \(-1\)
Recall TU game

If \(D = (0,0) \)

the threat point

The TU-solution is

\[\overline{y} = (\overline{u}, \overline{v}) \]

Scale back

\[(\frac{\overline{u}}{\lambda^*}, \overline{v}) = (\overline{u}, \overline{v}) \]

\(\lambda \)-transfer solution = Nash solution
Moreover, the equilibrium exchange rate is $\lambda^* = \frac{u}{\overline{u}}$.

\[
\frac{3 - (-1)}{1 - 3} = \frac{4}{-2} = -2
\]

\[
\begin{cases}
 v = 2u \\
 v = -2u + 5
\end{cases}
\]

$(\overline{u}, \overline{v}) = (\frac{5}{4}, \frac{5}{2})$
Homework Problem.

§ 4. 6.

Find the NTU- solution and the equilibrium exchange rate of the following game without a fixed threat point

\[(a) \begin{pmatrix} (5, 2) & (0, 0) \\ (0, 0) & (1, 4) \end{pmatrix} \]
No saddle points

$S = NTU$ feasible set

We scale $u \rightarrow \lambda u \rightarrow 0$

or
Note the slope of $(\lambda/4)$ and $(5\lambda/2)$.

If slope ≥ -1 then TU-solution outside S_λ.

S_λ
If we want TU-solution in S_λ

\rightarrow The slope from $(\lambda, 4)$ to $(5\lambda, 2)$ is -1

$$\frac{4-2}{\lambda-5\lambda} = -1 \quad \lambda = \frac{1}{2}$$
\[\lambda = \frac{1}{2} \]

\[
(\lambda A, B) = \begin{pmatrix}
\left(\frac{5}{2}, 2 \right) & (0, 0) \\
(0, 0) & \left(\frac{1}{2}, 4 \right)
\end{pmatrix}
\]

\[\theta = \frac{9}{2} \]

\[
\lambda A - B = \begin{pmatrix}
\frac{1}{2} & 0 \\
0 & -\frac{7}{2}
\end{pmatrix}
\]

Saddle point \(0 \).

\[\theta = 0. \]

\[\overline{D} = (0, 0). \]

\[\overline{x}_A = \left(\frac{9}{4}, \frac{9}{2} \right) \]

Rescale \(\overline{y} = \left(\frac{9}{2}, \frac{9}{4} \right) \)
Check \((\frac{9}{2}, \frac{9}{4})\) is in the NTU-feasible set.