Jan 21

1.3 Graph

In the previous lectures, we use drew graphs for the games: dots are positions, arrows are moves.

This is a very useful way to study games. Today we study graphs systematically. We also introduce Sprague-Grundy function.
Definition:
A directed graph, G is a pair (X, F) where X is a nonempty set of vertices (positions) and F is a function from X to the set of subsets of X. For each $x \in X$, $F(x)$ is a subset of X, $F(x) \subseteq X$.

For a given $x \in X$, $F(x)$ represents the positions to which a player may move from x.
(called the followers of x).

If F(x) is empty, x is called a terminal position.

This definition is equivalent to giving vertices and arrows connecting vertices. F(x) tells you you should draw an arrow from x to every element in F(x).
An impartial combinatorial game can be played on a graph $G = (X, F)$

1) Player 1 moves first starting from some vertex $x_0 \in X$

2) Players alternate moves.

3) At position x, the player whose turn it is to move chooses a position $y \in F(x)$

4) The player who is confronted with a terminal position at his turn loses.
Under the normal play rule, draw a graph:

A path of length m is a sequence $x_0, x_1, x_2, \ldots, x_m$ such that $x_i \in F(x_{i-1})$ for all $i = 1, \ldots, m$.

A cycle is a path x_0, x_1, \ldots, x_m with $x_0 = x_m$ and distinct $x_0, x_1, \ldots, x_{m-1}$.
It is possible that a graph game could continue for an infinite number of moves.

We can add conditions to the graph to avoid that. For example, for each $x_0 \in X$, there is a number n (may depend on x_0), such that every path starting from x_0 has length $\leq n$. That means starting from x_0, we can always end the game within n moves.
Such a game is called **progressively bounded**.

Note that if there is a circle, it is not possible.

Example:
A subtraction game with

\[S = \{1, 2, 3\} \]

5 chips

\[F(0) = \emptyset \quad \text{terminal} \]
\[F(1) = \{ 0 \} \]
\[F(2) = \{ 1, 0 \} \]
For all the rest \(k \geq 3 \)
\[F(k) = \{ k-3, k-2, k-1 \} \]

3.2 The Sprague-Grundy Function.

Some more refined data than \(P \) - positions / \(N \) - positions
Definition (Important)
The Sprague–Grundy function of a graph $G = (X, F)$ is a function g, defined on X

$$g : X \to \mathbb{N} = \{0, 1, 2, \ldots \}$$

such that

$$g(x) = \min \{ n \geq 0, \ n \not\equiv g(y) \quad \text{for } y \in F(x) \}$$

1. You know the values on g on $F(x)$ first, then you know $g(x)$.
2) \(g(x) \) is the smallest non-negative integer NOT found among the Sprague-Grundy values of the followers of \(x \).

Define \(\text{mex} \) of a set \(S \) of non-negative integers as the smallest non-negative integer NOT in this set \(S \).

Then we have

\[
g(x) = \text{mex} \{ g(y) : y \notin F(x) \}
\]
e.g. \(\text{mex} \{1, 3, 4\} = 0 \).

0, 2, 5, 6, ...

e.g. \(\text{mex} \{\text{even numbers} \} = 1 \)

1, 3, 5, ...

For a graph, the Sprague-Grundy function \(g \) may not exist, but if there exists such a \(g \), it is unique.

If \(x \) is a terminal position

\[
F(x) = \emptyset, \\
\text{mex} \{F(x)\} = 0 \quad g(x) = 0
\]
Then \(g \) is determined recursively (backward induction).

We will give examples later.

The important thing is if \(g \) exists

\[
\begin{align*}
P\text{-positions} & : g(x) = 0 \\
N\text{-positions} & : g(x) \neq 0
\end{align*}
\]

Check the following

1) If \(x \) is a terminal position
 \[g(x) = 0. \]

2) At a position \(x \), \(g(x) = 0 \), every follower \(y \in F(x) \) has \(g(y) \neq 0 \).

3) At a position \(x \), \(g(x) \neq 0 \),
there is at least one follower
\(y \in F(x) \) such that \(g(y) = 0 \).

Examples:

1. See the textbook
 Figure 3.2 Page 7-16

2. For the subtraction
 game with \(S = \{1, 2, 3\} \)

Draw the graph

\[\text{Diagram of graph} \]
We know
0 terminal $F(0) = \emptyset$
 $g(0) = 0$
1, $F(1) = \{0\}$
 $g(1) = \max \{0\} = 1$
2, $F(2) = \{0, 1\}$
 $g(2) = \max \{0, 1\} = 2$
3, $F(3) = \{0, 1, 2\}$
 $g(3) = \max \{0, 1, 2\} = 3$
4, $F(4) = \{1, 2, 3\}$
 $g(4) = \max \{1, 2, 3\} = 0$
5, $F(5) = \{2, 3, 4\}$
 $g(5) = \max \{2, 3, 0\} = 1$
\[x \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \]

\[f(x) \quad 0 \quad 1 \quad 2 \quad 3 \quad 0 \quad 1 \quad 2 \quad 3 \]

So \[g(x) = x \pmod{4} \]

\(\text{3} \quad \text{At least Half} \)

One pile game:

Remove at least half of the counters.

The only terminal position is 0

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \]

\[0 \quad 1 \quad 2 \quad 2 \quad 3 \quad 3 \quad 3 \quad 3 \]
So $F(x) = \left\lfloor \frac{x}{2} \right\rfloor$.

$g(x) = \min \{ k : 2^k > x \}$

4. Even every path has a finite length. The length of paths starting from x_0 can go to infinite.

$F(x)$ can be an infinite set $g(x)$ is not a finite number.

See Figure 3.3 Page 2-17
Here \(g(x) = \omega \uparrow \) a transfinite number. This is not a number, it is an ordinal, it means the first ordinal after all integers.

In this case there is a circle \(a, b, c, a \) e terminal \(g(e) = 0 \) d, \(F(d) = \{e\} \) g(d) = 1
How about c?

\[F(c) = \{ a, d \} \]
\[F(a) = \{ b \} \]
\[F(b) = \{ c \} \]

Since \(F(b) \) has only one element

\[g(b) = \begin{cases} 0 & \text{if } g(c) \neq 0 \\ 1 & \text{if } g(c) = 0 \end{cases} \]

Assume \(g(b) = 0 \)

\[g(a) = 1 \]

\[\Rightarrow g(c) = 0 \]

Assume \(g(b) = 1 \)

\[g(a) = 0 \]

\[\Rightarrow g(c) = 2 \]
So no Sprague-Grundy function exists.

In fact, if you face position c, you will not move to d (an \(N \)-position).

You will move to a:

\[
 c \rightarrow a \rightarrow b \rightarrow c \rightarrow a \rightarrow \cdots
\]

repeat forever.

It is defined to be a tie.