C. It’s false. Take the tautological line bundle T of $\mathbb{R}P^2$, then the first Stieffel-Whitney class of T $w_1(T) = a$ is a generator of $H^1(\mathbb{R}P^2, \mathbb{Z}/2)$. And $w_2(T \oplus T) = a^2 \neq 0 \in H^2(\mathbb{R}P^2, \mathbb{Z}/2)$, which shows that $T \oplus T$ is non-trivial.

D. The identity element is the trivial line bundle \mathbb{R}. The inverse of a line bundle L is its dual L^*, since we have the isomorphism $L \otimes L^* \cong \mathbb{R}$ sending $v \otimes f \mapsto f(v)$. For the second statement, if ξ possesses a Euclidean metric, then $\xi \cong \xi^*$ which implies $\xi \otimes \xi \cong \xi \otimes \xi^* \cong \mathbb{R}$. Conversely, If $\xi \otimes \xi = \mathbb{R}$, let ϕ denote the isomorphism, then ϕ or $-\phi$ gives rise to a Euclidean metric on ξ.

E. Since $\pi_i(T^3) = 1$ for $i \geq 2$, and $\pi_1(S^3) = 1$, we see the induced maps on homotopy groups are trivial. To check triviality of induced maps on reduced homology groups, only need to check H^2. But because q_* is trivial on H^2, so is $(qp)_*$.

To check that qp is not null-homotopic, we prove by contradiction. Suppose there is a homotopy between qp and the constant map, use covering homotopy property of Hopf fibration to lift it up to S^3 covering p. Then we get p has degree 0 since it is homotopic to a map onto a S^1 fiber in S^3, but on the other hand it is surjective. Contradiction.