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1 Introduction

My research interests focus on the interaction of noncommutative geometry and representation the-
ory. In more detail, my current research work centers around

• Equivariant K-theory of (noncompact) real semisimple Lie groups G acting on (complex) flag
variety B. For noncompact groups the equivariant K-theoy KG(B) is defined (in [7]) to be the
K-theory of the reduced crossed product C∗-algebra. I have obtained a proof of Baum-Connes
conjecture with coefficient in C(B). Now I am working on computing KG(B) and understanding
its relation to the representation theory of G.

• Differential graded-category and geometric representation theory. Together with my advisor J.
Block, I am trying to find a suitable curved-dg algebraA• such that the dg-category PA, consisting
of cohesive A•-modules, is quasi-equivalent to the category of admissible representations of G.

• Covariant Weil algebras. I introduced the classic and quantum covariant Weil algebras Wτ (g)
andWτ (g) in [21]. The covariant Weil algebras are simultaneous generalizations of Weil algebras
([1]) and family algebras ([15]). Wτ (g) andWτ (g) are curved-dg algebras whose curvatures have
elegant expressions. It is hoped that covariant Weil algebras can be applied to the construction of
Mackey’s analogue in [13].

• Formality and the Kashiwara-Vergne problem. Drinfeld associators give solutions to the gener-
alized Kashiwara-Vergne problem ([4]) as well as stable formality maps on Hochschild cochains
([10] and [11]). I am working with V. Dolgushev to find solutions to the generalized Kashiwara-
Vergne problem coming from each stable formality map, which is compatible with the above two
maps.

In this research statement I will describe the background of research, the result I have got and the
future plan of my work.

2 Equivariant K-theory of noncompact semisimple Lie group acting on
flag varieties

Let G be a real semisimple Lie group acting on a topological space X . According to [7], the equiv-
ariant K-theory as the K-theory of the reduced crossed product C∗-algebra

KG(X) := K(C∗red(G;C0(X))) (1)
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has a useful connection to Baum-Connes conjecture. Be aware that this is not the same as Kasparov’s
definition in [14].

When X = pt, V. Lafforgue in [17] studied the relation between KG(pt) and the representation
theory of G. My concern is mainly the case that X = B is the flag variety of GC, the complexification
of G. First of all I have proved in [21] that the assemble map

µred,B : KKG(S,B) −→ KG(B) (2)

is an isomorphism, where S = G/U and U is the maximal compact subgroup of G. Roughly speaking,
this means that we have the isomorphism

KG(B) ∼= KU (B) (3)

up to a shift of dimension. The proof is inspired by the Matsuki correspondence in [18] and relies on a
careful study of the G-orbits on B.

This result is a proof of Baum-Connes conjecture with coefficient on flag varieties, which is not
the end of the story, instead, it is the start point. In fact KG(B) reveals rich information about the
representation of G.

There are two problems I am currently working on. The first is to find explicitly the expression of
KG(B) for any real simple simple Lie group G. The strategy is that that we first study the G-orbits on B:
The real group G action on B is not transitive and B is a finite union of G orbits (for finiteness see [18])

B =

n⋃
i=1

Oi. (4)

The orbit structure of B plays an important role in representation theory, see [19]. In our context, I have
shown in [21] that KG(B) is a repeatedly extension of the KG(Oi) and each KG(Oi) is relatively easy to
understand. Now I am working on:

Problem 1. Compute KG(B) explicitly from KG(Oi) and find its relation with representations of G. For
example, if G has discrete series representations, do they appear in KG(B)?

The second problem is to study the push-forward action of the Weyl group W on KG(B). The
Weyl group action on B plays an essential role in [7] to obtain the Weyl character formula for compact
groups in the language of KK-theory. For noncompact G, however, the Weyl group action on B does
not commute with the G action. Fortunately, one of the advantages of K-theory is that we do not need
an honest commuting action: commuting up to homotopy is enough. Hence I come to the following
problem:

Problem 2. Let T be the Cartan subgroup of G, which is noncompact in general. Give an explicit
formula of the W action of KT (B). Moreover, figure out whether we have

KT (B)W
∼−→
?

KG(B). (5)

Other structures, such as the Demazure operators on KG(B) (see [7]), is in the further plan.

3 The dg-categorification of equivariant K-theory

K-theory itself is a decategorification. However there are several reasons suggests that equivariant
K-theory about needs a categrification. In [7], J. Block and N. Higson construct the globalization and
localization homomorphisms for K-theory

Γ: KG(B) � KG(pt) :Λ (6)
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where G is semisimple and B is the flag variety of GC. A lot of important information about the repre-
sentations of G can be found by studying Γ and Λ. For example, it is proved in [7] that

Γ ◦ Λ =|W | · Id ∈ KKG(pt, pt)

Λ ◦ Γ =
∑
x∈W

Iw ∈ KKG(B,B) (7)

and this gives the Weyl character formula for compact G.
It is expected that Γ and Λ, just as the globalization and localization functors of D-modules, is an

adjoint pair so that we can apply categorical tools, for example, the Barr-Beck theorem as in [5]. How-
ever, since KG(B) and KG(pt) are not categories, it does not make sense to talk about adjointness.

To get a reasonable categorification we need the concept of cohesive module, which is developed in
[6] by J. Block.

Definition 3.1. Let A• be a curved-dg algebra. the category of cohesive modules over A•, denoted by
PA, is defined to be finite generated projective modules over A0 with connections which are compatible
with the differential on A•.

Definition 3.2 ([8]). For X and G as above, let us consider the curved-dg algebra defined as the cross
product algebra

A• := S(G;S(g∗)⊗ Ω•(B)) (8)

where the S denote schwarz functions. Si(g∗) has degree 2i and Ωk(B) has degree k.

We are studying the cohesive modulesPA for the aboveA•, which we expect to be a dg-categorification
of KG(B). One problem we are working on is:

Problem 3. Find a way to localize the category PA at the fixed points of the G action. This is a kind of
categorification of the localization of equivariant K-theory in [20].

4 Mackey’s analogue and deformation of family algebras

The representation theory of semisimple Lie group G has another interesting constituent. Let

G = K exp p (9)

be the Cartan decomposition of G and
Gc = K o p (10)

be the Cartan motion group associated to G. The Mackey’s analogue is to find an identification (in vari-
ous senses) of the representations of G and those of Gc.

In [13] N. Higson introduced the spherical Hecke algebrasR(g, τ) andR(gc, τ) respectively, where
τ is a irreducible representation of K. These algebras have the importance that the irreducible R(g, τ)
modules are 1-1 correspondent to irreducible (g,K)-modules ofGwith nonzero τ -isotypical component,
and the similar result holds forR(gc, τ), see [13].

For the structures of the spherical Hecke algebras, we have the following proposition:

Proposition 4.1 ([13] Propostion 2.13). For complex semisimple Lie group G, we have the following
isomorphisms as algebras:

R(g, τ) ∼= [U(g)⊗ End(Vτ )op]K

R(gc, τ) ∼= [S(g)⊗ End(Vτ )op]K .
(11)

3



ZHAOTING WEI: RESEARCH STATEMENT 4

The right hand sides are the quantum family algebra Qτ (g) and the classical family algebra Cτ (g),
introduced by A. A. Kirillov in [15].

In [13] Higson constructed the generalized Harish-Chandra homomorphisms:

GHCτ : R(g, τ)→ U(h)

GHCτ,c : R(gc, τ)→ S(h)
(12)

and relates them to the admissible duals of G and Gc with minimal K-type τ .
The Mackey’s analogue for admissible dual has the following form:

Theorem 4.2 ([13], Section 8). Under the identification U(h) ∼= S(h), the two homomorphisms GHCτ
and GHCτ,c has the same image.

In the end of [13], Higson proposed the problem of constructing a quantization mapQ between Cτ (g)
and Qτ (g) such that the following diagram commutes.

Cτ (g) Qτ (g)

S(h) U(h)

GHCτ,c

Q

GHCτ
∼=

(13)

Here Q is a vector space isomorphism but need not to be an algebraic homomorphism.

To solve the above problem, in [23], I studied family algebras in the framework of deformation
theory. First of all, U(g) is isomorphic to S(g) with the star multiplication

a ∗ b = a · b+
1

2
{a, b}+ . . . .

For family algebras we have the same identification, first we define the Poisson bracket on Cτ (g):

Definition 4.1 (The Poisson bracket on Cτ (g)). Let A = Ai ⊗ ai, B = Bj ⊗ bj ∈ Cτ (g). We define

{A,B} := AiBj ⊗ {ai, bj}. (14)

Then it is clear that Qτ (g) is isomorphic to Cτ (g) with the star multiplication

A ∗ B = A · B +
1

2
{A,B}+ . . . . (15)

It is well-known that the poisson bracket is identically zero on S(g)K . The generalization of this fact
to family algebras is interesting. In [23] I got the following:

Theorem 4.3. The Poisson bracket is a Hochschild 2-coboundary. In fact we can construct a Hochschild
1-cochain∇ such that

{· , ·} = dHoch∇(· , ·).

The above theorem implies that although the first order deformation from Cτ (g) toQτ (g) is not zero,
it is infinitesimally trivial. This suggests that we can find more relations between Cτ (g) and Qτ (g). One
of the tools is the covariant Weil algebra below.
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5 Covariant Weil algebras

The above problem is a natural generalization of the famous Duflo’s isomorphism theorem, which
gives an algebraic isomorphism Z(U(g)) ∼= S(g)K . In [1] and [2] A. Alekseev, and E. Meinrenken give
a proof of Duflo’s isomorphism theorem for quadratic Lie algebras, using the quantization map between
the commutative Weil algebra W (g∗) and the noncommutative Weil algebraW(g).

In [22], I constructed a generalization of W (g∗) andW(g):

Definition 5.1 (covariant Weil algebras).

Wτ (g∗) := Sg∗ ⊗ ∧g∗ ⊗ EndVτ
Wτ (g) := U(g)⊗ Cl(g)⊗ EndVτ .

(16)

For quadratic Lie algebra we can identify g and g∗ hence

Wτ (g∗) ∼= Wτ (g) := Sg⊗ ∧g⊗ EndVτ . (17)

I also defined Lie derivations, contractions and differentials on Wτ (g∗) andWτ (g) to make them to
be curved-dg algebra with g actions. In particular I have found the following form of the curvatures of
Wτ (g∗) andWτ (g) [22]:

Theorem 5.1. Let ea be a basis of g and eabe a dual basis on g∗. As in [1], we denote the corresponding
element in Sg∗ by va and denote τ(ea) ∈ End(Vτ ) by τa. Then define

C := vaτa ∈Wτ (g∗). (18)

Let dW,τ denote the differential on Wτ (g∗). We have

dW,τ ◦ dW,τ (−) = [C,−] on Wτ (g∗). (19)

Similarly let ua denote the eain U(g) and define

C :=
1

2
(uaua + 2uaτa + τaτa −

1

48
fabcfabc) ∈ Wτ (g). (20)

We have
dW,τdW,τ (−) = [C,−] onWτ (g). (21)

Since the covariant Weil algebras are generalizations of the Weil algebras, it is expected that we can
construct a quantization map between Wτ (g) and Wτ (g) which solves Higson’s problem. Moreover,
Wτ (g) have their own interests to study. One of the problems I am working on is:

Problem 4. Find a suitable cohomology theory on covariant Weil algebras, which detects the kernel
of the generalized Harish-Chandra homomorphisms and further find the quantization map of the family
algebras.

Curved-dg algebras are of increasingly importance and I expect that the covariant Weil algebra will
serve as a "test" for the theory.
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6 Formality and the Kashiwara-Vergne problem

The Kashiwara-Vergne conjecture is closed related to (in fact, implies) Duflo’s isomorphism theorem.
There are several versions of this conjecture and one of them is given as follows (see [3]):

Conjecture 6.1 (Kashiwara-Vergne conjecture). Let mt be the star product on S(g) coming from Kont-
sevich’s formality map. Let O be an open neighborhood of the origin of g. The Kashiwara-Vergne
conjecture asserts the existence of an analytic map β =

∑
i β

iei : O2 → g2, vanishing at the origin,
such that

dmt

dt
= −mt ◦

∑
i

βitL(ei). (22)

where βit = t−1βi(tx, ty).

A. Alekseev and E. Meinrenken proved the above conjecture in [3] and proved its equivalence to
other more algebraic versions. In [4] A. Alekseev and C. Torossian gave a proof of the generalized
Kashiwara-Vergne conjecture based on the existence of Drinfeld associators.

On the other hand, in [10] and [11] V. Dolgushev introduced stable formality maps. In more details,
he constructed a 2-colored operad Tam whose algebras algebras are pairs (V,A) of cochain complexes
with the following data:

• a Ger∞-structure on V ,

• an A∞-structure on A

• a Ger∞-morphism from V to the Hochschild cochain complex C•(A) of A.

The construction of Tam also depends on a choice of Drinfeld associator.
In [10] Dolgushev defined a 2-colored operad KGra which is assembled from the graphs used by

Kontsevich and acts on functions and polyvector fields. Then in [11] he construct an operad map:

U : Tam→ KGra (23)

which we called the stable formality map. UsingU , for each affine space, we can construct a Ger∞-quasi-
isomorphism from VA, the polyvector fields on the affine space, to the Hochschild cochains C•(A) of
the algebra of functions A on this affine space. The name "stable" is justified by the fact that the map U
is valid for all (finite) dimensions.

Then we have the following commuting diagram

Drinfeld associators Solutions of Kashiwara-Vergne problem

Stable formality maps (24)

Now it is natural to ask whether we can find solutions for Kashiwara-Vergne problem from arbitrary
stable formality maps. A project in progress by Dolgushev and me is to complete the dashed arrow in
the above diagram to make it commute. Moreover, the Grothendieck-Teichmüller group acts on all three
and we want the map to be compatible with the group actions.

There are some more motivations of this construction:
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• This construction would give a simple way for identifying homotopy classes of stable formality
quasi-isomorphisms. For the homotopies of stable formality quasi-isomorphisms see [10] Section
5.

• It may shed some light on Alekseev-Torossian conjecture and the Deligne-Drinfeld conjecture (see
[12] Section 6 and [4] Section 4).
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