ECCO 2012: Positive Grassmannian. Exercises Lecture 1

1. Recall the notation and setup of the Plücker relations: let $[n]:=\{1,2, \ldots, n\}$ and $\binom{[n]}{k}=$ $\left\{I|I \subset[n],|I|=k\}\right.$. For a $k \times n$ matrix A and $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset[n]$, let $\Delta_{I}(A)=\operatorname{det}(k \times$ k submatrix in column set $I)$. Then the Plücker relations are: for any $i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{k} \in[n]$ and $r=1, \ldots, k$:

$$
\begin{equation*}
\Delta_{i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{k}}=\sum \Delta_{i_{1}^{\prime}, \ldots, i_{k}^{\prime}} \Delta_{j_{1}^{\prime}, \ldots, j_{k}^{\prime}}, \tag{0.1}
\end{equation*}
$$

where we sum over all indices i_{1}, \ldots, i_{k} and $j_{1}^{\prime}, \ldots, j_{k}^{\prime}$ obtained from i_{1}, \ldots, i_{k} and j_{1}, \ldots, j_{k} by switching $i_{s_{1}}, i_{s_{2}}, \ldots, i_{s_{r}}\left(s_{1}<s_{2}<\ldots<s_{r}\right)$ with $j_{1}, j_{2}, \ldots, j_{r}$.
Prove the Plücker relation.
2.
(a) Recall that the Fano plane is an example of a non-realizable matroid in $\binom{[7]}{3}$ (it is illustrated in Figure 1).

Check that the Fano plane satisfies the Exchange Axiom and that it is non-realizable.

Figure 1: The Fano plane.
(b) Two other examples of non-realizable matroids are the Pappus matroid and the Desargues matroid (illustrated in Figures 2[3) which come from Pappus and Desargues theorems respectively. We require that the 3 points that are supposed to be collinear in Pappus/Desargues theorems are linearly independent in the corresponding Pappus/Desargues matroids.

Check that these are non-realizable matroids.

Figure 2: The Pappus matroid
3. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ be a Young diagram that fit inside the $k \times n$ rectangle. Consider the subset S_{λ} of the Grassmannian $\mathbf{G r}(k, n)$ over the finite field \mathbb{F}_{q} that consists of elements that can

Figure 3: The Desargues matroid
be represented by $k \times n$ matrices A with 0 s outside the shape λ. For example, for $n=4$ and $k=2$, $S_{(4,1)}$ is the subset of elements of $\mathbf{G r}(2,4)$ representable by matrices of the form $\left(\begin{array}{cccc}* & * & * & * \\ * & 0 & 0 & 0\end{array}\right)$.

Find a combinatorial expression for the number of elements of $S_{(2 k, 2 k-2, \ldots, 2)}$ (over \mathbb{F}_{q}). Show that it is a polynomial in q.
4. Recall the notation of matroid polytopes. We denote by e_{1}, \ldots, e_{n} the coordinate vectors in \mathbb{R}^{n}. Given $I=\left\{i_{1}, \ldots, i_{k}\right\} \in\binom{[n]}{k}$ we denote by e_{I} the vector $e_{i_{1}}+e_{i_{2}}+\cdots+e_{i_{k}}$. Then for any $\mathcal{M} \subseteq\binom{[n]}{k}$ we obtain the following convex polytope

$$
P_{\mathcal{M}}=\operatorname{conv}\left(e_{I} \mid I \in \mathcal{M}\right) \subset \mathbb{R}^{n},
$$

where conv means the convex hull. Note that $P_{\mathcal{M}} \subset\left\{x_{1}+x_{2}+\cdots+x_{n}=k\right\}$ so $\operatorname{dim} P_{\mathcal{M}} \leq n-1$. The polytope $P_{\mathcal{M}}$ is a matroid polytope if every edge of $P_{\mathcal{M}}$ is parallel to $e_{j}-e_{i}$, i.e. edges are of the form $\left[e_{I}, e_{J}\right]$ where $J=(I \backslash\{i\}) \cup\{j\}$.
Prove that $P_{\mathcal{M}}$ is a matroid polytope if and only if \mathcal{M} satisfies the Exchange Axiom: For all $I, J \in \mathcal{M}$ and for all $i \in I$ there exists a $j \in J$ such that $(I \backslash\{i\}) \cup\{j\} \in \mathcal{M}$.

