ECCO 2012: Positive Grassmannian. Exercises Lecture 2

1. Calculate the number of matroids of $\operatorname{rank} k=2$ on $n=4$ elements. (List all matroid polytopes.)
2. Calculate the number of positroids of rank $k=2$ on $n=4$ elements and check that it equals the number of decorated permutations on 4 elements with two left arcs.
3. Cut a decorated permutation between the points $i-1$ and i. Show that the number of left arcs is the same for all is.
4. Define the Eulerian numbers $A_{k, n}$ by the formula:

$$
\sum_{i=1}^{\infty} i^{n} x^{i}=\frac{\sum_{k=0}^{\infty} A_{k, n} x^{k}}{(1-x)^{n+1}}
$$

The left hand side $f_{n}(x)$ satisfies the equation $f_{n}(x)=x f_{n-1}^{\prime}(x)$. Deduce the recurrence relation:

$$
A_{k, n}=(n-k+1) A_{k-1, n-1}+k A_{k, n-1} .
$$

(see Figure 1 for an illustration of the recurrence in Euler's triangle)

Figure 1: Euler's triangle
5. Show that $A_{k, n}$ (from the previous problem) equals the number of permutations π of size n with $k-1$ descents (i.e., the indices i such that $\pi_{i}>\pi_{i+1}$). (One way to solve the problem is to check Euler's triangle recurrence for the number of permutations with a given number of descents.)
6. Show that $A_{k, n}$ equals the number of permutations π of size n with k exceedances (i.e., the indices i such that $\pi_{i} \geq i$. (You can construct a bijection that transforms descents into exceedances, or check Euler's triangle recurrence.)

