ECCO 2012: Positive Grassmannian. Exercises Lecture 3

1.

(a) Prove the recurrence for derangement numbers D_{n} and the numbers of decorated permutations $N_{n}: D_{n}=n D_{n-1}+(-1)^{n}$ and $N_{n}=n N_{n-1}+1$
(b) ($\star \star$) Can you find a bijective proof of these recurrences?
2. Positroids of rank 3 which are given by matrices $\left[v_{1}, \ldots, v_{n}\right]$ such that $v_{i} \neq 0$ and $v_{i} \nVdash v_{j}$ for all i and j correspond to pictures like the one in Figure 1(a).

(a)

正

(b)

Figure 1: (a) n-gon illustrating rank 3 positroid. (b) the n-gons illustrating rank 3 positroids for $n=3$, 4 .

Let p_{n} be the number of such pictures with n points. For instance $p_{3}=1$ (the triangle) and $p_{4}=5($ see Figure 1(b))
(a) Calculate $p_{3}, p_{4}, p_{5}, p_{6}$.
(b) Find a closed formula for p_{n}.
3. Let f_{n} be the number of hook diagrams of shape $2 \times n$.
(a) Calculate f_{1}, f_{2}, f_{3}.
(b) Show that $f_{n}=3 f_{n-1}+2^{n-1}$, for $n \geq 1$. (Look at possible types of the last column $\bullet, \begin{array}{r}\bullet \\ 0\end{array}$, ㅇ. What condition does it impose on other columns?).
(c) Let $f(x)=\sum_{n \geq 0} f_{n} x^{n}$. Deduce that $f(x)=1+3 x f(x)+\frac{x}{1-2 x}$ and that $f(x)=\frac{(1-x)}{(1-2 x)(1-3 x)}$.
(d) Find a closed formula for f_{n}.
4. Let g_{n} be the number of fillings of a Young diagram $2 \times n$ with + 's and -'s with two forbidden

(a) Calculate g_{1}, g_{2} and g_{3}.
(b) Replace columns as such by four letters following the rules: $\frac{\square}{+} \mapsto A, \stackrel{-}{-} \mapsto B, \stackrel{+}{-} \mapsto C, \stackrel{\square}{\square} \mapsto D$. Deduce that g_{n} is the number of words w of length n in four letters A, B, C, D such that w cannot contain both letters C and D at the same time.
(c) Find a closed formula for g_{n}.
5. ($\star \star$) Prove that the number of hook diagrams of shape λ equals the number of fillings of λ with + and - that avoid the patterns:

