ECCO 2012: Positive Grassmannian. Exercises Lecture 3

1.

- (a) Prove the recurrence for derangement numbers D_n and the numbers of decorated permutations N_n : $D_n = nD_{n-1} + (-1)^n$ and $N_n = nN_{n-1} + 1$
- (b) $(\star\star)$ Can you find a bijective proof of these recurrences?

2. Positroids of rank 3 which are given by matrices $[v_1, \ldots, v_n]$ such that $v_i \neq 0$ and $v_i \not| v_j$ for all *i* and *j* correspond to pictures like the one in Figure 1(a).

Figure 1: (a) n-gon illustrating rank 3 positroid. (b) the n-gons illustrating rank 3 positroids for n = 3, 4.

Let p_n be the number of such pictures with n points. For instance $p_3 = 1$ (the triangle) and $p_4 = 5$ (see Figure 1(b))

- (a) Calculate p_3, p_4, p_5, p_6 .
- (b) Find a closed formula for p_n .

3. Let f_n be the number of hook diagrams of shape $2 \times n$.

- (a) Calculate f_1, f_2, f_3 .
- (b) Show that $f_n = 3f_{n-1} + 2^{n-1}$, for $n \ge 1$. (Look at possible types of the last column $\bullet, \bullet, \bullet, \bullet$) \circ . What condition does it impose on other columns?).

(c) Let $f(x) = \sum_{n \ge 0} f_n x^n$. Deduce that $f(x) = 1 + 3x f(x) + \frac{x}{1-2x}$ and that $f(x) = \frac{(1-x)}{(1-2x)(1-3x)}$

(d) Find a closed formula for f_n .

4. Let g_n be the number of fillings of a Young diagram $2 \times n$ with +'s and -'s with two forbidden $\stackrel{+}{-}$ (boxes may not be adjacent).

++patterns

- (a) Calculate g_1 , g_2 and g_3 .
- (b) Replace columns as such by four letters following the rules: $\underbrace{+}_{\pm} \mapsto A, \underbrace{=}_{-} \mapsto B, \underbrace{+}_{-} \mapsto C, \underbrace{=}_{+} \mapsto D.$ Deduce that g_n is the number of words w of length n in four letters A, B, C, D such that wcannot contain both letters C and D at the same time.
- (c) Find a closed formula for g_n .

5. $(\star\star)$ Prove that the number of hook diagrams of shape λ equals the number of fillings of λ with + and - that avoid the patterns:

