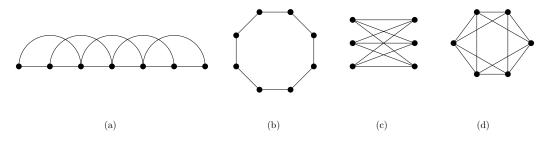
1. Show that for a perfect orientation of a plabic graph, the number k of boundary edges directed inside the disk satisfies

$$k - (n - k) = \#\{\text{black vertices}\} - \#\{\text{white vertices}\}.$$

2. Recall that for a plabic graph G we define $\mathcal{M}_G = \{I_P \mid P \text{ perfect orientation }\}$ where I_P is the set of boundary vertices with edges directed in P to the interior of the disk. Prove that for a plabic graph G, \mathcal{M}_G is a matroid. (Check the exchange axiom.)

3.

- (a) Show that local moves of a plabic graph do not change the matroid \mathcal{M}_G .
- (b) Show that local moves of a plabic graph do not change the decorated permutation associated with the graph.
- 4. Calculate chromatic polyonomials and numbers of acyclic orientations of the following graphs:



5. Show that the number A_G at acyclic orientations of G satisfies the deletion-contraction recurrence:

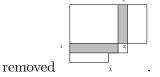
$$A_G = A_{G\setminus e} + A_{G/e}.$$

6.

(a) Check that polynomials $F_{\lambda}(q)$ and chromatic polynomials $\chi_{\lambda}(q)$ satisfy the recurrences

$$\begin{split} F_{\lambda} &= q F_{\lambda^{(1)}} + F_{\lambda^{(2)}} + F_{\lambda^{(3)}} - F_{\lambda^{(4)}} \\ q \chi_{\lambda} &= q \chi_{\lambda^{(1)}} - \chi_{\lambda^{(2)}} - \chi_{\lambda^{(3)}} + \chi_{\lambda^{(4)}}, \end{split}$$

where $\lambda^{(1)}$ be the shape λ with a corner box x at (i, j) removed, $\lambda^{(2)}$ is the shape λ with *i*th row removed, $\lambda^{(3)}$ is λ with *j*th column removed, $\lambda^{(4)}$ is λ with *i*th row and *j*th column



- (b) Deduce that the number of hook diagrams of shape λ equals the number of acyclic orientations as the bipartite graph G_{λ} .
- (c) $(\star\star)$ Find a bijective proof for (b).