
Lecture: Bernd Sturmfels Combinatorial Commutative Algebra ECCO 2012, Bogotá

Notes by Zvi Rosen. Thanks to Alyssa Palfreyman for supplements.

1. Tuesday, June 19, 2012

1.1. Squarefree Monomial Ideals.

Definition 1.1. A simplicial complex ∆ on {1, 2, . . . , n} is a collection of subsets such that σ ∈ ∆
and τ ⊂ σ ⇒ τ ∈ ∆.

Example 1.2 (n = 5). ∆ = all subsets of {1, 2, 3}, {2, 4}, {3, 4}, {5}. (See Figure 1.) The vector
f = (1, 5, 5, 1) indicates the number of sets in the simplicial complex with the given cardinality.
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Figure 1. Simplicial Complex.

Definition 1.3. The Stanley-Reisner ideal of ∆ is the monomial ideal

I∆ = 〈xτ : τ /∈ ∆〉.
Remark 1.4. We identify subsets τ ⊂ {1, 2, . . . , n}, vectors in {0, 1}n and squarefree monomials
xτ =

∏
i∈τ xi.

Example 1.5. From the simplical complex ∆ above, we have

I∆ = 〈x1x4, x1x5, x2x3x4, x2x5, x3x5, x4x5〉.
Theorem 1.6. The map ∆ → I∆ is a bijection between simplicial complexes on {1, 2, . . . , n} and
square free monomial ideals in S = K[x1, . . . , xn]. Furthermore,

I∆ =
⋂
σ∈∆

〈xi : i /∈ σ〉.

The facets (minimal non-faces) suffice to generate the ideal.

Example 1.7. Again, from the above, we have

I∆ = 〈x4, x5〉 ∩ 〈x1, x2, x5〉 ∩ 〈x1, x3, x5〉 ∩ 〈x1, x2, x3, x4〉.
Definition 1.8. The Alexander dual ∆∗ consists of the complements of the non-faces of ∆.

Example 1.9. We can construct I∆∗ from the monomial generators of I∆ or from the primary
decomposition:

I∆ = 〈x1x4, x1x5, x2x3x4, x2x5, x3x5, x4x5〉
⇒ I∆∗ = 〈x1, x4〉 ∩ 〈x1, x5〉 ∩ 〈x2, x3, x4〉 ∩ 〈x2, x5〉 ∩ 〈x3, x5〉 ∩ 〈x4, x5〉.

I∆ = 〈x4, x5〉 ∩ 〈x1, x2, x5〉 ∩ 〈x1, x3, x5〉 ∩ 〈x1, x2, x3, x4〉
⇒ I∆∗ = 〈x4x5, x1x2x5, x1x3x5, x1x2x3x4〉.
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1.2. Hilbert Series (“Inclusion-Exclusion”).

Definition 1.10. An S- module M is Nn-graded if M =
⊕

b∈Nn Mb and xaMb ⊆Ma+b. Its Hilbert
Series is:

H(M, x̄) =
∑
a∈Nn

dimK(Ma) · xa.

Example 1.11.

H(S, x) =

n∏
i=1

1

1− xi
= sum of all monomials in S.

If I is a monomial ideal, then H(S/I,X) = sum of all monomials not in I.

Definition 1.12. The K-polynomial of M is the numerator of

H(M,x) =
K(M,x)∏n
i=1(1− xi)

.

Theorem 1.13. The Stanley-Reisner ring has:

K(S/I∆, x) =
∑
σ∈∆

∏
i∈σ

xi
∏
j /∈σ

(1− xj)

 .

Example 1.14. For the square graph abcd:

I∆ = 〈ac, bd〉.

K = 1− ac− bd+ abcd.

We can use the theorem to calculate:

K = (1− a)(1− b)(1− c)(1− d) + a(1− b)(1− c)(1− d) + · · ·+ a(1− b)(1− c)d.

Corollary 1.15 (Stanley’s Green Book). If d = dim(∆) + 1 then

H(S/I∆; t, t, . . . , t) =
1

(1− t)n
d∑
i=0

fi−1t
i(1− t)n−i

=
1

(1− t)d
d∑
i=0

fi−1t
i(1− t)d−i =

h0 + h1t+ · · ·+ hdt
d

(1− t)d
.

1.3. Monomial Matrices. Consider a sequence of Nn-graded S-modules

F• : 0←F0
φ1← F1

φ2← · · · φe−1← Fe−1
φe← Fe ← 0.

Each φi preserves Nn grading: it can be written as a matrix with entries in K and row/column
labels in Nn.

Definition 1.16. • F• is a complex if φi ◦ φi+1 = 0∀i.
• F• is exact in homological degree i if ker(φi) = im(φi+1).
• F• is a free resolution of M if it is exact everywhere except in homological degree 0, where
M = F0/im(φ1).

Theorem 1.17 (Hilbert’s Syzygy Theorem). There exists such a free resolution of length ≤ n (the
length of the grading).

Remark 1.18. We use this theorem to compute K-polynomials.
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Example 1.19.

K = 1− ac− bd+ abcd.

0←S0000

[ 1 1 ]
←− S2

1010
0101

[
1
−1

]
←− S1111 ← 0.

Also, could be read as:

0←S0000

[ ac bd ]
←− S2

1010
0101

[
bd
−ac

]
←− S1111 ← 0.

1.4. Betti Numbers.

Definition 1.20. If F• is a minimal free resolution of M and Fi =
⊕

a∈Nn(Sa)
βi,a , then the i-th

Betti number of M in degree a is βi,a = βi,a(M).

Remark 1.21.

K(M,x) =
∑
a∈N

l∑
i=0

(−1)iβi,a(M)xa.

Definition 1.22. For a monomial ideal I and degree b ∈ Nn, define the Koszul simplicial complex

Kb(I) = {τ xb−τ ∈ I}.

Theorem 1.23 (Hochster). The Betti numbers of I and S/I in degree i can be expressed as

βi,b(I) = βi+1,b(S/I) = dimK H̃i−1(Kb(I);K).

(Here, we are discussing reduced homology.)

Exercise 1.24. Calculate the Alexander dual. See Figure 2.
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Figure 2. Simplicial Complex and its Alexander Dual.
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1.5. Questions.

Question 1.25. How can you tell if a complex is a resolution, i.e. exact at a given step?

Use Macaulay 2. Try to check dimension, and Gröbner bases are your friend.

Question 1.26. How does one check minimality of a free resolution?

No nonzero constants in the matrix output by Macaulay2.

2. Wednesday, June 20, 2012

2.1. Borel-fixed Monomial Ideals. Let S = K[x1, . . . , xn] be a ring with N grading, such that
char(K) = 0.

Let GLn(K) = {invertible n×n matrices}, called the general linear group. Let Bn(K) = {upper-
triangular n× n matrices}, called the Borel group. Let Tn(K) = {diagonal n× n matrices}, called
the Torus group.

Tn(K) ⊂ Bn(K) ⊂ GLn(K).

Proposition 2.1. An ideal I ⊂ S is fixed under Tn iff I is a monomial ideal.

Proof by Example. Consider f = 11x2y + 17yz + 19xz3 ∈ I ⊂ K[x, y, z], a torus-fixed ideal. Scale
x, y, z by 2, 3, . . . (for example). 11

17
19

 1 1 1
23 22 24

33 32 34

 x2y
yz
xz3

 ∈
 I

I
I


By fudging with the scaling numbers, you can get each entry to stand on its own. �

Proposition 2.2. I is GLn-fixed iff I = 〈x1, . . . , xn〉d for some d ∈ N.

Proposition 2.3. For a monomial ideal I, the following are equivalent:

(1) I is Borel-fixed.
(2) If m ∈ I is divisible by xj, then m xi

xj
∈ I, for i < j.

Fix a term order < on S. If I is any ideal in S, then its generic initial ideal is

gin<(I) := in<(g ◦ I).

where g is a random matrix in GLn(K), i.e. in a suitable Zariski open subset.

Theorem 2.4 (Theorem 15.20 in Eisenbud). gin<(I) is Borel-fixed.

2.2. Gröbner Basis Review.

Example 2.5. Consider I = 〈Λ+
(3)〉, under the lex order x > y > z. By definition,

I = 〈x+ y + z, x2 + y2 + z2, x3 + y3 + z3〉.

The Gröbner basis is:

GB = {x+ y + z, y2 + yz + z2, z3}.

in<(I) = 〈x, y2, z3〉.

S/I ∼=K K{1, y, z, yz, z2, yz2}.
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Hilbert function (N-grading):

d 0 1 2 3 4 5 6
S 1 3 6 10 15 21 28
S/I 1 2 2 1 0 0 0
I 0 1 4 9 15 21 28

gin<(I) = 〈x, y2, yz2, z4〉.

Example 2.6 (GB for Submodules).

M =

〈[
x
y

]
,

[
x+ y
x+ y

]〉
⊂ S2

TOP (term over position) Gröbner basis rules ties in favor of the term with greater weight. In
our case,

GB =

{[
x
y

]
,

[
y
x

]}
in<(M) = 〈xe1, xe2〉.

GB =

{[
x
y

]
,

[
y
x

]
,

[
0

x2 − y2

]}
in<(M) = 〈xe1, ye1, (x

2 − y2)e2〉.

2.3. Eliahou-Kervaire Resolution.

Lemma 2.7. Each monomial m in Borel-fixed monomial ideal

I = 〈m1,m2, . . . ,mr〉.
can be written uniquely as a product m = mi ·m′, with max(mi) ≤ min(m′). Let ui = max(mi).

Proposition 2.8. The K-polynomial of S/I equals

K(S/I, x) = 1−
r∑
i=1

mi

ui−1∏
j=1

(1− xj).

Example 2.9.

I = 〈x2
1, x1x2, x

3
2, x1x

3
3〉.

⇒ K = 1− x2
1 − x1x2(1− x1)− x3

2(1− x1)− x1x
3
3(1− x1)− x1x

3
3(1− x1)(1− x2)

= 1− x2
1 − x1x2 − x3

2 − x1x
3
3 + x2

1x
2
3 + x1x2x

3
3 + x1x

3
2 + x2

1x2 − x2
1x2x

3
3.

This suggests the minimal free resolution

0←− S ←− S4 ←− S4 ←− S ←− 0.

Theorem 2.10. Let M ⊂ Sr be the module of first syzygies on a Borel-fixed monomial ideal
I. Then M has a POT Gröbner basis whose initial module in(M) has a linear free resolution.
Moreover, Sr/in(M) and I ∼= Sr/M have the same Betti numbers, namely:

βi =
r∑
j=1

(
uj − 1

i

)
.

Example 2.11 (Example 2.19 from Sturmfels-Miller).

I = 〈x1x2x
4
4, x1x2x3x

2
4, x1x

6
3, x1x2x

2
3, x

6
2, x1x

2
2, x

2
1〉.

See text or Macaulay2 Code for more detail.
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2.4. Lex-Segment Ideals. Fix a Hilbert function H : N→ N of some homogeneous ideal I ⊂ S.
Let Ld be the K-span of the H(d) largest monomials in the lex order on Sd and define

L =
∞⊕
d=0

Ld.

Proposition 2.12 (Macaulay 1927). The graded vector space L is a Borel-fixed ideal.

Theorem 2.13 (Macaulay’s Theorem). For every d ∈ N, the lex-segment ideal L has at least as
many generators as every other (monomial) ideal with the same Hilbert function H.

Example 2.14. Intersect of a quadric and cubic surface in P3. As an ideal, this is generated by a
quadratic and cubic homogeneous polynomial in 4 variables.

The Hilbert Series is:

1− t2 − t3 + t5

(1− t)4
=

1 + 2t+ 2t2 + t3

(1− t)2
= 1 + 4t+

∞∑
r=2

(6r − 3)tr.

ginrevlex(I) = 〈x2
1, x1x

2
2, x

4
2〉 ginlex(I) = 〈x1x

6
3, x

6
2, x1x2x4, x1x2x3x

2
4, x1x2x

2
3, x1x

2
2, x

2
1〉.

The lex-segment ideal L has 18 generators, more than from any other term ordering.

2.5. Question Session.

Question 2.15. What is a syzygy?

Syzygy, historically from astronomy, means relations. So, syzygies are relations among the
generators of an ideal.

Question 2.16. Describe a Gröbner Basis for submodules.

An element of Sn is a sum of monomials times coordinate vectors:
∑
γimieji ∈ Sn. Given these

elements, you are setting a term order in each coordinate. Similar to ordering of variables, we also
want the position to take a certain priority in the variable ordering.

In POT, we have m1ei > m2ej iff i > j or i = j and m1 > m2.

In TOP, we have m1ei > m2ej iff m1 > m2 or m1 = m2 and i > j.

Question 2.17. How do we find the decomposition m = mi ·m′?

Since the ideal is Borel-fixed, we can trade higher variables for lower variables while staying in
the generating set.

3. Thursday, June 21, 2012

3.1. Staircases. First, let us look at a 2-dimensional case.

Example 3.1. Consider the ideal I ⊂ k[x, y] as follows.

I = 〈xa1yb1 , . . . , xarybr〉.
such that a1 > a2 > · · · > ar, and b1 < b2 < · · · < br.

This can be portrayed in a staircase diagram as in Figure 3.
Let us consider the K polynomial of this ideal:

K(S/I, x, y) = (1− x)(1− y)
∑
{xiyj /∈ I} = 1−

r∑
i=1

xaiybi +

r−1∑
j=1

xajybj+1 .

The first sum corresponds to the inner corners, and the second sum to the outer corners.
6
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(a1, b1)

(a2, b2)

(a3, b3)

Figure 3. Staircase Diagram.

Proposition 3.2. The minimal free resolution of S/I equals

0←− S ←− Sr ←− Sr−1 ←− 0.

The minimal first syzygies are (ybi+1−biei − xai−ai+1ei+1).

Proposition 3.3 (Irreducible Decomposition).

I = 〈yb1〉 ∩ 〈xa1 , yb2〉 ∩ 〈xa2 , yb3〉 ∩ · · · ∩ 〈xar−1, ybr〉 ∩ 〈xar〉,

where the first (resp. last) intersectand is deleted if b1 = 0 or a1 = 0.

Definition 3.4. The Buchberger graph Buch(I) of a monomial ideal I = 〈m1,m2, . . . ,mr〉 has:

• Vertices 1, 2, . . . , r,
• Edges {i, j} for i, j such that there is no k for which mk|lcm(mi,mj) and mk has smaller

degree in every variable occurring in lcm(mi,mj).

Proposition 3.5. The module of syzygies on I is generated by the syzygies

σij =
lcm(mi,mj)

mi
ei −

lcm(mi,mj)

mj
ej

corresponding to edges in the Buchberger graph.

See Figure 3.2 in Sturmfels-Miller for an example. The ideal’s decomposition can be read by
breaking the cubical complex into cuboids. In labeling the Buchberger graph, in each face, you
write the vector of the least common multiple of the vertices. The K polynomial is 1 − (vertex
labels) + (edge labels)− (face labels).

In general, the Buchberger graph is not planar. But it has nice properties under genericity
conditions.

3.2. Genericity and Deformations.

Definition 3.6. A monomial ideal I ⊂ K[X,Y, Z] is strongly generic if any generators xiyjzk and

xi
′
yj
′
zk
′

have the property that i 6= i′ unless they are both zero, and similarly for the other indices.
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Proposition 3.7. If I is strongly generic, then the Buchberger graph is planar and connected. If I
is also Artinian, then Buch(I) consists of the edges of a triangulated triangle (thus, 3-connected).

Definition 3.8. A planar map is a graph together with an embedding into a surface homeomorphic
to R2.

Theorem 3.9. Given a strongly generic monomial ideal I in K[X,Y, Z], the planar map Buch(I)
provides a minimal free resolution of I:

0←− S ←− Sr ∂E←− Se ∂F←− Sf ←− 0.

The differentials in this sequence are:

∂E(eij) =
mij

mj
ei −

mij

mi
ej .

∂F (eR) =
∑

edges {i,j}⊂R

±mR

mij
eij , where mR = lcm(mi|i ∈ R).

Question 3.10. What if I is not strongly generic?

Introduce a polynomial ring Sε = K[xε, yε, zε] for ε = 1
N for some N ∈ N which contains

S = K[X,Y, Z].
Consider monomial ideals:

I = 〈m1,m2, . . . ,mr〉 ⊂ S, and I = 〈mε,1,mε,2, . . . ,mε,r〉 ⊂ Sε.
Say Iε is a strong deformation of I if the partial order on {1, 2, . . . , r} by x-degree of the mε

refines the partial order of the mi and same for y and z.

Example 3.11.

I = 〈X,Y, Z〉3.
We could approach this problem using Borel-fixed ideal theory, Eliahou-Kervaire resolutions, or
even tropical strategy. We will use the Buchberger graph of I and Iε. (See Figure ∆).

0, 0, 3

1, 0, 2 + ε 0, 1 + 2ε, 2

2, 0, 1 1 + ε, 1, 1 + ε 0, 2− ε, 1 + 2ε

3, 0, 0 2 + ε, 1 + ε, 0 1 + 2ε, 2, 0 0, 3, 0

Figure 4. Buch(Iε) after deformation.

Proposition 3.12. Specializing the labels of the vertices, edges, and faces of the planar Buchberger
graph Buch(Iε) under ε = 0 yields a planar map resolution of I. (usually not minimal).

Question 3.13. Can you always make it minimal?

Yes. See Section 3.5 of Sturmfels-Miller.

Corollary 3.14. Let r be the number of generators of an ideal, e the number of first syzygies, and
f the number of second syzygies. Then, e ≤ 3r − 6 and f ≤ 2r − 5.
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4. Friday, June 22, 2012

Definition 4.1. A polyhedral complex in Rm is a finite set X of convex polytopes such that

• If P ∈ X and F ⊂ P is a face, then F ∈ X.
• If P,Q ∈ X, then P ∩Q is a face of both P and Q.

X has a (reduced) chain complex (over Z) with boundary maps

∂(F ) =
∑
facets
G⊂F

sign(G,F ) ·G.

Definition 4.2. X is a labelled cell complex if its r vertices are labelled by vectors a1, . . . , ar ∈ Nn.
The label of any face F ∈ X is given by

xaF = lcm(xai |i ∈ F ).

The monomial matrix on X uses this chain complex for scalar entries with row and column labels
aF , for F ∈ X.

The cellular free complex FX is the resulting complex of Nn graded free S-modules.

FX =
⊕
F∈X

S(−aF ). ∂(F ) =
∑
facets
G⊂F

sign(G,F ) · xaF−aG ·G.

We call FX a cellular resolution if it is exact.

Example 4.3. Consider the octahedron cell complex as in Figure 5. By counting the faces of
various dimension, we obtain the cellular free complex below:

0← S ← S6 ← S12 ← S8 ← S ← 0.

ab

bc

acad

bd

cd

Figure 5. Labelled Cell Complex.

If Q is an order ideal in Nn, then XQ = {F ∈ X|aF ∈ Q} is a labeled sub complex of X.

Example 4.4. X�b and X≺b.

Proposition 4.5. FX is a cellular resolution iff the cell complex X�b is acyclic over K for all
b ∈ Nn.

In this case, FX resolves S/I where I = 〈xav |v vertex ∈ F 〉.
Example 4.6 (Example 4.3 Continued). Take X�abc, where X is the labeled cell complex from
Example 4.3. The resulting subcomplex as depicted in Figure 6 is acyclic, as are all other subcom-
plexes. Therefore, FX is a cellular resolution. However, it is not minimal, since the edge labels
match the face label.

9



Lecture: Bernd Sturmfels Combinatorial Commutative Algebra ECCO 2012, Bogotá

ab

bc

ac

Figure 6. Subcomplex X�abc.

Theorem 4.7. Write H̃i(X, k) for the reduced homology. If FX resolves I then

βi,b(I) = dimk H̃i−1(X≺b, k).

Example 4.8 (Example 4.6 Continued). To calculate β2,abcd(I), we look at the subcomplex X≺abcd,
depicted in Figure 7. The K-polynomial of this ideal is:

K = 1− ab− ac− ad− bc− bd− cd+ abc+ abd+ acd+ bcd− 3abcd.

Because dimk H̃1(X≺b, k) = 3, we have β2,abcd(I) = 3.

ab

cd

bcbd

acad

Figure 7. Subcomplex X≺abcd.

Theorem 4.9. If FX is a cellular resolution of I, then the K-polynomial of I is the Nn-graded
Euler characteristic

K(S/I;X) =
∑
F∈X

(−1)dimF+1xaF .

Examples of Cellular Resolutions

(1) Planar Maps. (as we discussed in relation to the Buchberger graphs)

(2) Taylor Resolution: X = ∆r−1, the full (r − 1)-simplex. This is “highly non-minimal.”

(5) Minimal Triangulation of RP2.

0← S ← S10 ← S15 ← S6 ← 0

is exact iff char(k) 6= 2. The corresponding cell complex has 10 vertices, 15 edges, and 6
pentagonal faces (see p. 70 of Sturmfels-Miller for a diagram.)
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(3) Permutohedron Ideals.

(4) Tree Ideals. They are defined as follows:

I =

〈(∏
i∈σ

xi

)n−|σ|+1

∅ ⊆ σ ⊆ [n]

〉
.

The tree ideals are Alexander dual to permutohedron ideals. They have (n+1)n−1 standard
monomials, one for each labeled tree on n+ 1 vertices. The Hilbert Series gives the parking
functions = # reduced divisors on Kn+1.

These objects are important for Chip Firing (see “Monomials, Binomials, and Riemann-
Roch” by Manjunath and Sturmfels).

The cell complex for n = 3 is presented in Figure 8.

z3

y2z2

y3

x2y2x3

x2z2

xyz

Figure 8. Tree ideal for n = 3.

(6) Simple Polytopes. Let P be a simple d-polytope with facets F1, . . . , Fn and vertices v1, . . . , vr.

Label each vertex vi by a squarefree monomial
∏
vi /∈Fj

xj .

The corresponding ideal IP is the irrelevant ideal in the toric Cox ring.

Exercise 4.10. Prove that FP is a linear minimal free resolution.

Question 4.11. Does every monomial ideal have a minimal cellular resolution?

No! (M. Velasco, Journal of Algebra 2008)
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