Analytic Combinatorics, ECCO 2012 Exercise Sheet 1

1. Explain why $n!\sim\left(\frac{n}{e}\right)^{n}$.
2. Deduce from the Stirling formula that 100 ! has 158 digits. (1000)!?
3. Find all alternating permutations $n=5$.
4. Use Sloan to find T_{17}.
5. Prove that $T_{n}=$ number of labeled binary decreasing trees.
6. Explain why $T(z)=\sum_{n \geq 0} T_{n} \frac{z^{n}}{n!}$ is a solution of $\frac{d T(z)}{d z}=1+T(z)^{2}$.
7. Check that $T(z)=\tan (z)$.
8. Explain (prove) that for n odd,

$$
T_{n}-\binom{n}{2} T_{n-2}+\binom{n}{4} T_{n-4}-\cdots=(-1)^{\frac{n-1}{2}}
$$

9. (a) Show that $\tan (z) \sim \frac{8 z}{\pi^{2}-4 z^{2}}$.
(b) Show that $\frac{T_{n}}{n!} \sim 2 \cdot\left(\frac{2}{\pi}\right)^{n+1}$.
10. Prove that the ordinary generating function $C(z)=\sum c_{n} z^{n}$ for binary trees on $n+3$ vertices satisfies

$$
C(z)=1+C(z)^{2} .
$$

