Analytic Combinatorics, ECCO 2012 Exercise sheet 3

1. Show that the product of two exponential generating functions $A(z) = \sum_{n\geq 0} a_n \frac{z^n}{n!}$ and $B(z) = \sum_{n\geq 0} b_n \frac{z^n}{n!}$ is

$$A(z)B(z) = \sum_{n \ge 0} \left(\sum_{k \ge 0}^{n} \binom{n}{k} a_k b_{n-k}\right) \frac{z^n}{n!}$$

- 2. (a) Let \mathcal{P} be the labeled class of permutations $\mathcal{P} = SEQ(\mathcal{Z})$. We denote by $\tilde{\mathcal{P}}$ the combinatorial class obtained from \mathcal{P} when we forget the labels. What are $\tilde{\mathcal{P}}$ and $\tilde{\mathcal{P}}_n$?
 - (b) Check that $\mathcal{P}' = SET(CYC(\mathcal{Z}))$ also describes permutations as sets of cycles, and therefore in the labeled universe $\mathcal{P} \cong \mathcal{P}'$. What is $\tilde{\mathcal{P}}'$? Show that $\tilde{\mathcal{P}} \ncong \tilde{\mathcal{P}}'$.
 - (c) In the unlabeled universe, what is the relationship between $SEQ_{\geq 1}(\mathcal{Z})$, $MSET_{\geq 1}(\mathcal{Z})$, $CYC(\mathcal{Z})$?
 - (d) Show that in the labeled universe the identity $SET \circ CYC \cong SEQ$ is true.
- 3. (a) Find $R_n^{(2)}$, $R_n^{(3)}$ and $R_n^{(n)}$.
 - (b) Find $S_n^{(2)}$, $S_n^{(3)}$ and $S_n^{(n)}$.
 - (c) Show that $R_n = \frac{1}{2} \sum_{l \ge 0} \frac{l^n}{2^l}$ and $S_n = \frac{1}{e} \sum_{l \ge 0} \frac{l^n}{l!}$.
 - (d) Find the EGF of *double surjections*, i.e. surjections where each preimage contains at least two elements.
- 4. (a) Let $\mathcal{W}^{(A)}$ denote the family of words over an alphabet of cardinality r, such that the number of occurrences of each letter lies in a set $A \subseteq \mathbb{N}$. Find $\mathcal{W}^{(A)}(z)$.
 - (b) Find the EGF of words containing each letter at most b times, and the EGF of words containing each letter more than b times.
- 5. (a) Find the EGF of the class of partitions (of sets) without singletons.
 - (b) Find the EGF for all permutations whose cycles have length at most r.
 - (c) Find the EGF of all derangements (permutations without fixed points).
- 6. An alignment is a well-labeled sequence of cycles. Let \mathcal{O} be the set of all alignments. Find $\mathcal{O}(z)$.