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Notes by Zvi Rosen. Thanks to Alyssa Palfreyman for supplements.

1. Tuesday, June 12, 2012

Combinatorics is the study of finite structures that combine via a finite set of rules. Alge-
braic combinatorics uses algebraic methods to help you solve counting problems. Often algebraic
problems are aided by combinatorial tools; combinatorics thus becomes quite interdisciplinary.

Analytic combinatorics uses methods from mathematical analysis, like complex and asymptotic
analysis, to analyze a class of objects. Instead of counting, we can get a sense for their rate of growth.
Source: Analytic Combinatorics, free online at http://algo.inria.fr/flajolet/Publications/
book.pdf.

Goal 1.1. Use methods from complex and asymptotic analysis to study qualitative properties of
finite structures.

Example 1.2. Let S be a set of objects labeled by integers {1, . . . , n}; how many ways can they
form a line?

Answer: n!. How fast does this quantity grow? How can we formalize this notion of quickness
of growth? We take a set of functions that we will use as yardsticks, e.g. line, exponential, etc.; we
will see what function approximates our sequence.

Stirling’s formula tells us:

n! ∼
(n
e

)n√
2πn.

where an ∼ bn implies that limn→∞
a
b → 1.

This formula could only arrive via analysis; indeed Stirling’s formula appeared in the decades
after Newton & Leibniz.

Almost instantly, we know that (100)! has 158 digits. Similarly, (1000)! has 102568 digits.

Example 1.3. Let an alternating permutation σ ∈ Sn be a permutation such that σ(1) < σ(2) >
σ(3) < σ(4) > · · · > σ(n); by definition, n must be odd.

Let Tn be the number of alternating permutations in Sn.
Listing the first few terms of this sequence we have:

n Tn n!
1 1 1
3 2 2
5 16 120
7 272 5040
9 7936 362, 880

It appears that n! grows “much faster” than Tn. How do we quantify this notion of “much
faster”?

(1) Find a formula to approximate Tn.
(2) Compare it to n! or the Stirling formula, i.e. we look at the ratio Tn/n! as n → ∞. If the

limit is 1, then the growth is as fast, if the limit is 0, then we say it is “much slower”.

We want to find a formula that approximates Tn; in 1881, Desire Andre found that the coefficient
of zn

n! in the function tan(z) is precisely Tn.
Therefore, tan(z) is the exponential generating function (e.g.f) for Tn.
We now describe a bijection between these permutations and the set of decreasing binary trees,

i.e. a rooted binary tree where the value of a child is always less than the value of a parent.
For example, taking the permutation (

123456789

572836491

)
,
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we translate it into a decreasing binary tree by starting with the largest number, and letting the
left child and the right child be the largest number to its left and its largest child to the right, then
iterate.

So, an alternating permutation looks like (σL,max, σR).
Let τ be the class of alternating permutations. Then,

τ = (1) ∪ (τ,max, τ).

⇒ T (z) = z +

∫ z

0
T (ω)2dω.

⇒ dT (z)

dz
= 1 + T (z)2, T (0) = 0,

a differential equation that we solve and find T (z) = tan(z).

Remark 1.4. What we have learned:

(1) A simple algorithm to find Tn.
(2) g.f admits an explicit expression in terms of a well known mathematical object, i.e. tan(z).

(3) the probability of randomly obtaining an alternating permutation: T (n)
n! is the coefficient of

znin Taylor expansion of tan(z).

There is an amazing relationship between the growth of the coefficients of a counting sequence
and the singularities of the generating function when viewed as an analytic function C→ C.

Example 1.5. The sequence 1, 1, 1, 1, 1, . . . are the coefficients of the generating function:∑
n≥0

zn “ = ”
1

1− z
, |z| < 1,

with singularity at z = 1.

Example 1.6. The sequence 1, 2, 4, 8, 16, . . . are the coefficients of the generating function:∑
n≥0

2nzn “ = ”
1

1− 2z
, |z| < 1

2
,

with singularity at z = 1/2.

Based on this, the singularities give us information about the growth of the sequence. Therefore,
in Example 1.3, we want to examine the singularities of tan(z) near zero. The closest singularities
are ±π

2 .
Let us approximate tan(z) near ±π

2 , we have:

tan(z) ∼ 8z

π2 − 4z2
.

Extracting the coefficient of zn, we obtain:

Tn
n!
∼ 2

(
2

π

)n+1

→ 0.

Therefore, we can say with more rigor that Tn grows much slower than n!.

Remark 1.7. Here, we used only real singularities. However, in general, we must study complex
values of z. It is singularities in the complex plane that matter and complex analysis that is needed
to draw conclusion regarding the asymptotic behavior of the counting sequence.
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Example 1.8. Let cn = the number of all unlabeled ordered binary trees with n internal nodes.

n cn
0 1
1 1
2 2
3 5
4 14
5 42

You may recognize these as the Catalan numbers. We can obtain this via the symbolic method as
well:

C = (C, ·, C).

⇒ C(z) = 1 + zC(z)2.

⇒ C(z) =
1−
√

1− 4z

2z
.

=
∑
n≥0

1

n+ 1

(
2n

n

)
zn.

As this is the ordinary generating function, we are concerned with the coefficient of zn, which gives
us the formula:

cn =
1

n+ 1

(
2n

n

)
=

1

n+ 1

(2n)!

n!n!
.

We can approximate this last expression using Stirling’s formula:

cn ∼ c∗n =
4n√
πn3

.

Here the growth is related to a non-pole singularity, i.e. z = 1
4 .

2. Wednesday, June 13, 2012 / Symbolic Method

(Note that all topics discussed today deal with unlabeled structures.)
There are many set-theoretic operations that have a nice translation into generating functions.

Today, we will discuss:

• Admissible constructions on combinatorial classes
• Symbolic Method → Constructible combinatorial classes → O.G.F.

Definition 2.1. A Combinatorial Class is a finite or enumerable set with a size function, such
that:

(1) The size of any element ≥ 0.
(2) The number of elements of a given size is finite.

An counts number of elements of size n.

Definition 2.2. An ordinary generating function

A(z) =

µ∑
n≥0

Anz
n,

where A is a combinatorial class. Equivalently,

A(z) =
∑
α∈A

z|α|.
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Admissible Constructions:
m-ary construction: Associates to any collection of m combinatorial classes B(1), . . . , B(m), a

new class A = Φ(B(1), . . . , B(m)). It is admissible iff An depends only on (B
(1)
n )n≥1, . . . , (B

(m)
n )n≥1.

If we have an admissible construction, then there exists ψ such thatA(z) = ψ[B(1)(z), . . . , B(m)(z)].

Example 2.3 (Cartesian Product).

A = B × C ⇐⇒ A = {α = (β, γ)|β ∈ B, γ ∈ C}.

|α|A = |β|B + |γ|C , An =

n∑
k=0

BkCn−k

⇒ A(z) = B(z)C(z).

Example 2.4 (Disjoint Union of Sets).

A = B ∪ C, B ∩ C = ∅.
The size of ω ∈ A is just its size as an element of B or C.

An = Bn + Cn ⇒ A(z) = B(z) + C(z).

Remark 2.5. Even if

Definition 2.6. A constructible class is a class that can be defined from “primal” elements by
means of admissible constructions.

Example 2.7. The neutral class E has one object of size 0.

A ∼= E × A ∼= A× E ⇒ A(z) = 1.

The atomic class Z has one object of size 1. Its generating function is Z(z) = z.

Basic admissibility:
The combinatorial union, cartesian product, SEQ, PSET, MSET, CYC are all admissible with

the operators on ordinary generating functions:

(1) A = B + C. If the sets are not disjoint, we simply color them by taking the Cartesian
product each with a particular color. Then, perform the usual disjoint union. The ordinary
generating functions satisfy: A(z) = B(z) + C(z).

(2) A = B × C. As we saw before, A(z) = B(z)C(z).
(3) SEQ(B) = {ε}+ B + B × B + · · · .

A = SEQ(B) = {α = (β1, . . . , βl)|l ≥ 0}.

The size function has |α|A =
∑l

i=1 |βi|B is admissible iff B has no objects of size 0.

SEQ(Z) \ ε = •, ••, • • •, · · · ,
simply the unary representation of integers ≥ 1. As for the ordinary generating functions,

SEQ(B) : A(z) = 1 +B(z) +B(z)2 + · · · = 1

1−B(z)
.

(4) A = PSET (B) := set of all finite subsets of B.

α = {{β1, . . . , βl}|βi ∈ B}.
The size is given by

|α|A =

l∑
i=1

|βi|.
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A = PSET (B) :=
∏
β∈B

({ε}+ {β}).

A(z) =
∏
β∈B

(1 + z|β|) =
∏
n≥1

(1 + zn)Bn .

⇒ exp logA(z) = exp(
∑
n≥1

Bn log(1 + zn)) = exp(
∑
k≥1

(−1)k−1

k
B(zk)).

(5) MSET (B) := all finite multi sets of B. B is finite.

A = MSET (B) ∼=
∏
β∈B

SEQ({β}).

A(z) =
∏
β∈B

1

1− z|β|
.

(6) Cycle construction CY C(B) := sequences taken up to circular shift.

CY C(B) := SEQ(B)/S → circular shift.

Theorem 2.8 (Symbolic Method, Unlabelled). The generating function of a “constructible class”
is a completion of a system of functional equations whose terms are built from:

1, z,+,×, Q,Exp,Exp, log,

where the non-obvious operations are defined by:

Q[f ] =
1

1− f
(SEQ).

Exp[f ] = exp(
∑
k≥1

f(zk)

k
) (MSET ).

Exp[f ] = exp(
∑
k≥1

(−1)k−1f(zk)

k
) (PSET ).

log[f ] =
∑
k≥1

ϕ(k)

k
log

1

1− f(zk)
.

Iterative Combinatorial Classes:

Example 2.9 (Binary Words). LetW be the set of binary words, i.e. words on the alphabet {a, b}.

W = SEQ(z + z)⇒W (z) =
1

1− 2z
.

Example 2.10 (General Plane Trees). A plane tree has a root, and its children could be considered
an ordered set of roots for new trees. Therefore, we solve recursively.

G = ZSEQ(G)⇒ G(z) = z
1

1−G(z)
⇒ 1

2
(1−

√
1− 4z).

Example 2.11 (Polygon Triangulations). An (m+ 2)-gon can be tiled by m triangles.

T = {ε}+ (T ,∆, T ).

⇒ T (z) = 1 + zT 2(z)⇒ T (z) =
1−
√

1− 4z

2z
.

⇒ Tn = Cn.
5
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3. Thursday, June 14, 2012

Symbolic Method for Labeled Structures.

Recall that the number of trees on n+ 1 internal vertices satisfies:

Cn ∼
4n√
πn3

,

where the 4 is related to the singularity at 1/4.

Definition 3.1. A labelled class has labelled objects.

(1) Weakly-labelled objects: labeled graph whose vertices ⊂ I.
(2) Well-labelled objects of size [n] if the set of labels is [1 . . . n].

A labelled class is a combinatorial class of well-labelled objects.

Example 3.2 (Labelled graphs). The graph on four vertices 1−2−3−4 is equivalent to 4−3−2−1.
Therefore, we have 12 labelled graphs on four vertices.

Definition 3.3. The exponential generating function (E.G.F.) of a class A is given by:

A(z) :=
∑
n≥0

An
zn

n!
=
∑
α∈A

z|α|

|α|!
.

The neutral class E and atomic class Z are the same as in the unlabeled universe.

Three Basic Classes of Labels

Example 3.4. The class of Permutations P, is given by:

P = {ε, (1),

(
12

21

)
, . . .}.

Clearly, Pn = n!, so the exponential generating function is

P (z) =
∑
n≥0

Pn
zn

n!
=
∑
n≥0

zn =
1

1− z
.

Example 3.5. The class of Urns U , is given by:

U = {ε, (1), (12), (123), . . .}.
Un = 1, so the exponential generating function is

U(z) =
∑
n≥0

Un
zn

n!
=
∑
n≥0

zn

n!
= ez.

Example 3.6. The class of Circular graphs C, is given by:

C = {ε, (1), (12),

(
123

132

)
, . . .}.

Cn = (n− 1)!, so the exponential generating function is

C(z) =
∑
n≥0

Cn
zn

n!
=
∑
n≥0

zn

n
= log

1

1− z
.

Admissible Labeled Constructions
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Remark 3.7. Product of A(z) and B(z):

A(z)B(z) = C(Z)⇒ C(z) =
∑
n≥0

an
zn

n!
·
∑
n≥0

bn
zn

n!
.

⇒ C(z) =
∑
n≥0

(
n∑
k=0

(
n

k

)
akbn−k

)
zn

n!
.

Remark 3.8. Product of multiple functions:

A(z) = B(1)(z) · · ·B(r)(z)⇒ A(z) =
∑
n≥0

 ∑
k1+...+kr=n

(
n

k1, k2, . . . , kr

)
b
(1)
k1
· · · b(r)kr

 zn

n!
.

Definition 3.9. β ∗ γ := {(β′, γ′) the well-labeled objects ρ(β′) = β, ρ(γ′) = γ}.

Example 3.10. Product of a labeled triangle graph and a labeled edge graph.

Definition 3.11. The labelled product B ∗ C is obtained by forming ordered pairs from B×C and
performing all possible order-preserving relabeling.

A = B ∗ C =
⋃

β∈B,γ∈C
(β ∗ γ).

⇒ An =
∑

|β|+|γ|=n

(
|β|+ |γ|
|β|

)
⇒ A(z) = B(z)C(z).

The list of admissible labeled constructions:

(1) Labeled Product.
(2) The set of k-sequences (k-SEQ), and the set of all sequences (SEQ).
(3) The set of k-Sets (k-Set), and the set of all sets (SET).
(4) The set of k-Cycles (k-CYC), and the set of all cycles (CYC).
(5) Combinatorial Sum.

The corresponding generating functions are:

(1)

A(z) ·B(z)

(2)

1

1−B(z)

(3)

eB(z)

(4)

log
1

1−B(z)

(5)

A(z) +B(z)
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Example 3.12 (Surjective functions). Consider R as the set of surjections f : A→ B, where |B| =
r. Let R

(r)
n = all surjections f : [n]→ [r]. We can write this as the sequence (f(1), f(2), . . . , f(n))

all of which are elements of [r]. We can also think of it as the sequence of subsets of [n] that map
to k. For example, given(

123456789

212535354

)
→ ({2}, {1, 3}, {5, 7}, {9}, {4, 6, 8}).

Therefore, R = SEQr(SET≥1(Z)). This returns a generating function:

R(z) = (ez − 1)r.

Example 3.13 (Set Partitions). Let S
(r)
n = the number of ways to partition [n] into r blocks.

Sr =
⋃
n

S(r)n = SETr(SET≥1(Z)).

⇒ S(r)(z) =
1

r!
(ez − 1)r.

Example 3.14 (Words). Let X = {a1, . . . , ar} be an alphabet. Let W be the class of all words,
and Wn be the class of all words of size n.

W = Ur = SEQr(U)⇒W (z) = erz.

Example 3.15 (Non-Plane Labeled Rooted Trees). Let T be the class of all non-plane (i.e. subtrees
are not ordered) labeled rooted trees.

T = Z ∗ SEQ(T ).

4. Friday, June 15, 2012

Example 4.1. Recall that Alternating Permutations led us to the generating function tan(z) :
C→ C. We also found that

lim
z→±π/2

T (z) ∼ 8z

π2 − 4z2
.

These coefficients grow similarly to 2 ·
(
2
π

)n+1
= 4

π

(
2
π

)n
. Why does this tell us anything about

the growth of the coefficients of tan(z)?

The Symbolic Method has asked us to think as follows:

Sequence → Formal Power Series → Functions

{An} →
∑

Anz
n → A(z).

Example 4.2.

{1, 1, 1, . . . , } →
∑

zn → 1

1− z
.

{1, 2, 4, 8, . . .} →
∑

2nzn → 1

1− 2z
.

Today we will concern ourselves more with the functions on the right.
8
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In general the sequence gives us a function that is analytic on a neighborhood of 0 in C. The
analytic structure of A(z) tells us about the asymptotics of An.

Let f be an analytic function on a neighborhood of 0. Then f has a power series representation
f(z) =

∑
fnz

n.

Singularities of f :

Let f : Ω → C. f is analytic on Ω if at every z0 ∈ Ω, it has a power series representations
f(z) =

∑
cn(z − z0)n on |z − z0| < δ. Equivalently, f is differentiable at each z0 ∈ Ω.

A singularity of f is a point where f cannot be extended analytically.

Example 4.3.

{1, 1, . . .} →
∑

zn → 1

1− z
.

This power series converges only on Ω = |z| < 1, and the function is defined and analytic on C\{1}.
This leads to a singularity at z0 = 1.

Example 4.4. The exponential generating function for derangements:

fn = [zn]f(z), f(z) =
e−z

1− z
⇒ Dn = n!fn.

This has a singularity at z0 = 1.

Example 4.5. The exponential generating function for surjections:

g(z) =
1

2− ez
.

This has a singularity when ez = 2, i.e. for all k ∈ Z,

z = log 2 + 2πik

is a singular point.

Example 4.6. The ordinary generating function for Catalan numbers Cn:

h(z) =
1−
√

1− 4z

2
.

ω 7→
√
ω has a singularity at ω0 = 0. Therefore, this O.G.F. has a singularity at z0 = 1

4 . is a
singular point.

First Principle: The exponential growth of fn tells us the location of singularities of f . By
location, we mean “how close is the closest singularity to zero?”
Second Principle: The sub-exponential growth of fn tells us the nature of singularities of f .

More precisely, suppose f(z) =
∑
fnz

n has radius of convergence R such that 0 < R < ∞.
Then:

fn =

(
1

R

)n
Θ(n), where lim sup

n→∞
|Θ(n)|1/n = 1.

More explicitly,
|Θ(n)| ≥ (1 + ε)n for finitely many n,

|Θ(n)| ≥ (1− ε)n for infinitely many n.

Fact 4.7. The closest singularity to 0 of f is on the circle |z| = R.

One can justify this by assuming the negative and applying Cauchy’s Integral Formula.

Exercise 4.8. Prove: If Θ(n) := Rnfn, then lim sup |Θ(n)|1/n = 1. Hint: Root test.
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Example 4.9.
f d = R Exp.
1

1−z 1 1n

1
1−2z 1/2 2n

1−
√
1−4z
2 1/4 4n

1
2−ez log 2

(
1

log 2

)n
Transfer
The second principle is called “Transfer” by Flajolet-Sedgwick. We want to know

f(z) ∼ σ(z) as z → z0
?⇒ fn ∼ σn as n→∞.

Strategy:

(1) Find singularities of f(z) closest to zero. This gives you the dominant distance R. Then,

fn =

(
1

R

)n
Θ(n).

(2) Normalize to R = 1 and z0 = 1.
(3) Find σ in catalog such that f ∼ σ as z → z0.
(4) Conclude fn ∼ σn.

Example 4.10. Suppose f is analytic on C \ (1,∞); the closest singularity is at 1. Suppose also
that

f ∼ 1

(1− z)α
= σ(z),

for α = 1, 2, 3 . . .. Claim: fn ∼ nα−1

(α−1)! . We can evaluate a contour integral

fn =
1

2πi

∫
γ

f(z)

zn+1
dz.

where γ is a “Pacman” shape with a little circle around 1 and a big circle going out to infinity,
with rays at ±π/4, as in Figure 1.

1

π
4

Figure 1. Contour for Integral.

Example 4.11. Let σ = 1−
√

1− z, then σn asymptotically approaches 1

2
√
πn3

.

Therefore, for f = 1
2(1−

√
1− 4z), we have fn ∼ 4n 1

4
√
πn3

.
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Example 4.12. Let σ = 1
1−z , then σn asymptotically approaches (and always equals) 1.

Let σ = 1
(1−z)2 , then σn asymptotically approaches (and always equals) n.
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