COMBINATORIAL HOPF ALGEBRAS - ECCO'12 EXERCISES LECTURE 3

(1). Prove that Sym* \cong Sym by showing that the correspondance

$$
h_{\lambda}^{*} \mapsto m_{\lambda}
$$

is an isomorphism.
(2). Prove that

$$
h_{\lambda}=\sum_{\mu} K_{\lambda, \mu} s_{\mu}
$$

where $K_{\lambda, \mu}$ is the number of semistandard Young tableaux of shape λ and content (or filling) μ. Compare this coefficient with the ones from question (2) from yesterday.
(3). Write a formula for the product and coproduct of the basis $\left\{M_{\gamma}\right\}$ of $Q S y m$.
(4). Define $S S y m:=\bigoplus_{n \geq 0} k S_{n}$. A basis at degree n is given by $\left\{F_{\sigma}\right\}_{\sigma \in S_{n}}$. This basis multiplies and comultiplies as follows:

$$
F_{\sigma} F_{\mu}=\sum_{\nu=\sigma \cdot \mu} F_{\nu} \quad \Delta\left(F_{\sigma}\right)=\sum_{\sigma=\tau \cdot \pi} F_{s t(\tau)} \otimes F_{s t(\pi)}
$$

Can you realize this (Hopf) algebra as a subspace of $k\left\langle\left\langle x_{1}, x_{2}, \ldots\right\rangle\right\rangle$?
(5). Compute the dimension (as a vector space) of

$$
k\left[x_{1}, x_{2}, \ldots, x_{n}\right] /\left\langle Q \text { Sym }^{+}\right\rangle
$$

for $n=1,2,3, \ldots$

