COMBINATORIAL HOPF ALGEBRAS - ECCO'12 EXERCISES LECTURE 4

(1). Recall:

SPECIES \rightsquigarrow SYMBOLIC METHOD \rightsquigarrow E.G.F. $A \qquad A[n] \qquad A(z) = \sum \dim A[n] z^n/n!$ (a) Show that $(A \cdot B)(z) = A(z) \times B(z)$

Now,

SPECIES
$$\rightsquigarrow$$
 SYMBOLIC METHOD \rightsquigarrow O.G.F.
 $A \qquad A[n]_{S_n} \qquad \tilde{A}(z) = \sum \dim A[n]_{S_n} z^n$

- (*) Can you prove that $A \cdot B(z) = A(z) \times B(z)$?.
- (2). Compute the antipode for the Hopf monoid L.
- (3). Can you see E as a Hopf monoid? How about Π ?
- (4). What is K[L] and $\overline{K}[L]$?
- (*). Let H be the Hopf algebra of ranked poset (up to isomorphism). Multiplication is given by cartesian product and comultiplication is given by

$$\Delta(P) = \sum_{0 \le x \le 1} [0, x] \otimes [x, 1]$$

Now, given a specific character ζ for H and the character φ for Qsym, there exists a unique homomorphism $\Psi : H \to Qsym$ such that $\zeta = \Psi \circ \varphi$. Recall that $\varphi(M_{\alpha}) = M_{\alpha}(1, 0, 0, ...).$

- Consider $\zeta(P) = 1$ for P a single poset.
- (a). Let $\Psi(Q) = \sum_{\alpha} f_{\alpha}(P) M_{\alpha}$, where $f_{\alpha}(Q)$ is the number of chains in Q of the form $0 = x_0 \leq x_1 \leq \cdots \leq x_l = 1$ where $rk(x_i) rk(x_{i-1}) = \alpha_i$. Show that Ψ is the Hopf morphism satisfying $\zeta = \Psi \circ \varphi$.
- (b). Expand Ψ in the F basis which is given by

$$F_{\alpha} = \sum_{\beta \ge \alpha} M_{\beta}$$

where $\alpha \leq \beta$ whenever α is a refinement of β .