Notes were taken by Zvi Rosen. Thanks to Alejandro Morales for providing Figure 2.

$$
\text { 1. Tuesday, June 19, } 2012
$$

Notation 1.1. Let CHA denote a combinatorial Hopf algebra.
A combinatorial Hopf Algebra is a graded Hopf algebra.
Definition 1.2. A graded algebra is a vector space

$$
H=\bigoplus_{n \geq 0} H_{n}, \quad H_{0}=k
$$

This latter condition makes the algebra connected. We have a multiplication:

$$
m: H \otimes H \rightarrow H
$$

Using the formalism of the tensor product presupposes distributive laws, linearity, etc. We also have a unit:

$$
u: k \rightarrow H, \quad 1 \mapsto 1
$$

The graded version of these maps are as follows:

$$
\begin{gathered}
m_{k, l}: H_{k} \otimes H_{l} \rightarrow H_{k+l} . \\
u: k \rightarrow H_{0} .
\end{gathered}
$$

Maps should be associative and respect the unity, as in Figure 1.

Figure 1. Multiplication and Unit.

Definition 1.3. A graded, connected bialgebra also has a co-algebra structure; it is represented by the tuple:

$$
\left(H=\bigoplus_{n \geq 0} H_{n}, m, u, \Delta, \epsilon\right)
$$

The last two operations are associated to the coalgebra. We have comultiplication:

$$
\Delta: H \rightarrow H \otimes H, \quad a \mapsto \sum a_{(1)} \otimes a_{(2)}
$$

as well as a counit:

$$
\epsilon: H \rightarrow k .
$$

The graded versions are as follows:

$$
\Delta_{k, l}: H_{k+l} \rightarrow H_{k} \otimes H_{l}, \quad \Delta_{n}=\sum_{k+l=n} \Delta_{k, l} .
$$

These operations satisfy the previous diagrams, but with all arrows reversed (so they are coassociative, and respect counity).

For a bialgebra, we require Δ, ϵ to be algebra homomorphisms, i.e.

$$
\Delta(a b)=\Delta_{1}(a) \Delta(b)
$$

Multiplying the comultiplied tensors involves a twisting operation τ, which may require some cleverness; for a graphical description, see Figure 2. These operations satisfy the diagram in Figure 3.

Figure 2. Δ as an Algebra Homomorphism.

Figure 3. Δ, m, and τ.

Definition 1.4. A bialgebra $H\left(=\right.$ the tuple $\left.\left(H=\bigoplus_{n \geq 0} H_{n}, m, u, \Delta, \epsilon\right)\right)$ is Hopf, if there exists a map $S: H \rightarrow H$, such that it satisfies the diagram of Figure $4 . S$ is called the antipode.

Figure 4. The Antipode S.

Remark 1.5. Why do we care about an antipode? The set

$$
\{\varphi: H \rightarrow A\}=\operatorname{Hom}_{A l g}(H, A), \quad A \text { an algebra }
$$

has a multiplication (convolution).
Given $f, g \in \operatorname{Hom}_{A l g}(H, A)$ we convolute them satisfying the diagram in Figure 5.
In fact, $\operatorname{Hom}_{A l g}(H, A)$ is a group under convolution with identity $u_{A} \circ \epsilon_{H}$ and inverse

$$
f^{(-1)}=f \circ S
$$

Figure 5. Convolution.
Proposition 1.6. The antipode satisfies:

$$
S(a b)=S(b) S(a) .
$$

Moreover, if H is commutative or cocommutative (see Figure 6), then

$$
S^{2}=I d
$$

Figure 6. Commutativity and Co-commutativity.

Proposition 1.7. For a Graded Hopf Algebra, we have a formula for the antipode. First,

$$
S(1)=1 \text {. }
$$

For $h \in H_{n}, n>0$,

$$
\begin{gathered}
\Delta(h)=1 \otimes h+\sum_{a_{(1)} \neq 1, \operatorname{deg}\left(a_{(1)}\right)>0} a_{(1)} \otimes a_{(2)} . \\
m \circ(I d \otimes S) \circ \Delta(h)=u \circ \epsilon(h)=0 . \\
m \circ(I d \otimes S)\left[1 \otimes h+\sum_{\operatorname{deg}\left(a_{(1)}\right)>0} a_{(1)} \otimes a_{(2)}\right] . \\
=S(h)+\sum_{\operatorname{deg}\left(a_{(1)}\right)>0} a_{(1)} S\left(a_{(2)}\right)=0 .
\end{gathered}
$$

Note that $d\left(a_{(2)}\right)<n$. Therefore,

$$
S(h)=-\sum_{\operatorname{deg}\left(a_{(1)}\right)>0} a_{(1)} S\left(a_{(2)}\right) .
$$

If H is a connected, graded bialgebra, then there is a unique antipode S (given by this formula).
Example 1.8 (Symmetric functions). Let $S y m=k\left[e_{1}, e_{2}, \ldots\right]$, and let $\operatorname{deg}\left(e_{i}\right)=i$. The multiplication is well-known. As a basis, we can take the set of monomials $e_{1}^{a_{1}} e_{2}^{a_{2}} \cdots$, where finitely many a 's are nonzero. For notation, we denote a monomial by a weakly descending sequence of variables in the product, e.g.

$$
\underset{3}{e_{1}^{2} e_{3} e_{4}^{3}=e_{4} e_{4} e_{4} e_{3} e_{1} e_{1}} \rightarrow e_{444311}
$$

This gives us the set:

$$
\left\{e_{\lambda}\right\}_{\lambda \vdash n \geq 0}
$$

where $\lambda \vdash n$ indicates that λ is a partition of $n . \lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$, where each $\lambda_{i}>0$, the sum of the λ 's is n and, the sequence is weakly decreasing.

When $n=0, \lambda=\emptyset \Rightarrow e_{0}=e_{\emptyset}=1$. So, Sym is a graded algebra, with

$$
\text { Sym }=\bigoplus_{n \geq 0} k\left\{e_{\lambda}\right\}_{\lambda \vdash n} .
$$

Sym is also a biaglebra. Sym is a free algebra (commutative).

$$
\Delta\left(e_{i}\right)=\sum_{k+l=i} e_{k} \otimes e_{l}
$$

We need to check that it is coassociative (simply requires viewing a 3-part partition as an iterated 2-part partition in 2 ways).

What is the antipode S ? Let $S\left(e_{i}\right)=(-1)^{i} h_{i}$ (we define h_{i} in this way).

$$
\begin{gathered}
\Delta\left(e_{i}\right)=1 \otimes e_{i}+\sum_{k+l=i, k>0} e_{k} \otimes e_{l} . \\
\Rightarrow(-1)^{i} h_{i}=S\left(e_{i}\right)=-\sum_{k=1}^{i} e_{k} S\left(e_{i-k}\right)=-\sum_{k=1}^{i} e_{k}(-1)^{i-k} h_{i-k} .
\end{gathered}
$$

What do we get when we take $S\left(h_{i}\right)$?
We now commence with four definitions of Combinatorials Hopf Algebras:
Definition 1.9. (1) We have a singled out basis such that the structure is positive, i.e. $\left\{e_{\lambda}\right\}$ such that:

$$
\begin{gathered}
e_{\lambda} e_{\mu}=\sum c_{\lambda \mu}^{\nu} e_{\nu}, \\
\Delta\left(e_{\nu}\right)=\sum d_{\lambda \mu}^{\nu} e_{\lambda} \otimes e_{\mu}
\end{gathered}
$$

where the coefficients are positive.
(2) Realization:

$$
H \hookrightarrow k\left[\left[x_{1}, x_{2}, \ldots\right]\right] \text { or } k\left\langle\left\langle x_{1}, x_{2}, \ldots\right\rangle\right\rangle .
$$

(3) Representation Theory:

$$
H \cong K\left(\bigoplus_{n \geq 0} A_{n}\right)
$$

(4) Via characters:

$$
\chi: H \rightarrow k, \quad \text { an algebra homomorphism. }
$$

2. Wednesday, June 20, 2012

Yesterday, we saw:
(1) Graded Hopf Algebras.
(2) Antipode
(3) Commutative or Co-commutative implies $S^{2}=I d$.
(4) $S y m=k\left[e_{1}, e_{2}, \ldots\right]$, with antipode $h_{i}=S\left((-1)^{i} e_{i}\right)$. Because S is an involution, we can also write $S y m=k\left[h_{1}, h_{2}, \ldots\right]$.
(5) Four definitions of the Combinatorial Hopf Algebra.

Consider Sym via definition (1): Given a singled-out basis with a positive structure, we want to make a rule for the construction of these objects. We want to explain the structure constants with combinatorial rules

$$
\begin{gathered}
e_{\lambda} e_{\mu}=e_{\lambda \cup \mu} \\
\Delta\left(e_{\lambda}\right)=\sum e_{\mu} \otimes e_{\nu}
\end{gathered}
$$

Consider Sym via definition (2). We truncate the variables, so we work in the "symmetric polynomials" $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. S_{n} acts on R in the following way: $\sigma . P\left(x_{1}, \ldots, x_{n}\right)=P\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$.

$$
\begin{aligned}
\Lambda_{(n)}= & \left\{P \in R: \sigma \cdot P=P, \quad \forall \sigma \in S_{n}\right\}=R^{S_{n}} . \\
& \Rightarrow \forall P, Q \in \Lambda_{(n)}, P Q \in \Lambda_{(n)} .
\end{aligned}
$$

2.1. Bases for $\Lambda_{(n)}$.

(1) Orbit of a Monomial. Start with a monomial, then add in all monomials that result from S_{n} action (without multiplicity.

Example 2.1. $x_{1}^{2} x_{3} x_{4}$. The orbit includes: $x_{1}^{2} x_{2} x_{3}, x_{1}^{2} x_{2} x_{4}, x_{1} x_{3}^{2} x_{4}, \ldots$. The distinguished member of this set is $x_{1}^{2} x_{2} x_{3}$, since its exponent vector is a weakly decreasing sequence. This is the leading monomial in the lexicographic order.

We define

$$
m_{\lambda}=\sum_{x^{\alpha} \text { in orbit of } x^{\lambda}} x^{\alpha} .
$$

We can project elements of $\Lambda_{(n+1)} \rightarrow \Lambda_{(n)}$, with

$$
m_{\lambda} \mapsto \begin{cases}m_{\lambda}, & \ell(\lambda) \leq n \\ 0, & \text { otherwise }\end{cases}
$$

Taking the inverse limit of this sequence of projections, we obtain:

$$
S y m=\lim _{\leftarrow} \Lambda_{(n)} \subset k\left[\left[x_{1}, x_{2}, \ldots\right]\right] .
$$

The basis is $\left\{m_{\lambda}\right\}_{\lambda \vdash m \geq 0}$, where, as above,

$$
m_{\lambda}=\sum_{x^{\alpha} \text { in orbit of } x^{\lambda}} x^{\alpha} .
$$

(2) Elementary Symmetric Functions.

Theorem 2.2 (Newton).

$$
\Lambda_{(n)}=k\left[e_{1}, e_{2}, \ldots, e_{n}\right],
$$

where e_{i} is defined as follows:

$$
\prod_{i=1}^{n}\left(1+x_{i} t\right)=\sum_{i=0}^{m} e_{i} t^{i}
$$

Again, we project elements of $\Lambda_{(n+1)} \rightarrow \Lambda_{(n)}$, with

$$
e_{i} \mapsto \begin{cases}e_{i}, & i \leq n \\ 0, & \text { otherwise }\end{cases}
$$

Taking the inverse limit, we have another basis for Sym.

Remark 2.3. Presentation of Sym $\subseteq k\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ (Introduction of the m basis).

$$
\begin{gathered}
S y m \rightarrow \Lambda_{(n)} \subseteq k\left[x_{1}, \ldots, x_{n}\right] . \\
\left\langle\Lambda_{(n)}^{+}\right\rangle=\left\langle f \in \Lambda_{(n)}: f(0,0, \ldots, 0)=0\right\rangle . \\
=\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle=\left\langle h_{1}, h_{2}, \ldots, h_{n}\right\rangle \\
\operatorname{dim}_{k}\left(k\left[x_{1}, x_{2}, \ldots, x_{n}\right] /\left\langle h_{1}, \ldots, h_{n}\right\rangle\right)=n!.
\end{gathered}
$$

Remark 2.4. When we consider the realization $S y m \subseteq k\left[\left[x_{1}, x_{2}, \ldots\right]\right]$, the multiplication is clear just the usual multiplication of series. Comultiplication, is less obvious.

$$
f \in \operatorname{Sym}, f=f\left(x_{1}, x_{2}, \ldots\right) \Rightarrow f(Y+Z)=f\left(y_{1}, y_{2}, \ldots, z_{1}, z_{2}, \ldots\right)=\sum f^{(1)}(Y) f^{(2)}(Z) .
$$

So, we define the comultiplication:

$$
\Delta(f)=\sum f^{(1)} \otimes f^{(2)}
$$

In that spirit, for

$$
e_{m}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m}} x_{i_{1}} \cdots x_{1_{m}},
$$

we have:

$$
\begin{gathered}
e_{m}\left(y_{1}, y_{2}, \ldots, z_{1}, z_{2}, \ldots\right)=\sum_{\substack{1<i_{1}<\cdots<i_{l} \\
1 \leq j_{1}<\cdots<j_{m-l}}} y_{i_{1}} \cdots y_{i_{l}} z_{j_{1}} \cdots z_{j_{m-l}} . \\
=\sum_{l=0}^{m} e_{l}(Y) e_{m-l}(Z) .
\end{gathered}
$$

Therefore, we define the comultiplication:

$$
\Delta\left(e_{m}\right)=\sum_{l=0}^{m} e_{l} \otimes e_{m-l}
$$

Now, we consider Sym via definition (3), namely representation. Our claim is that Sym and the representation of S_{n} are linked.

2.2. Crash Course in Representation Theory.

Definition 2.5. Let G be a finite group. A representation is a $\operatorname{map} \varphi: G \rightarrow G L(V)$, where V is a vector space of dimension $d \Rightarrow G L(V) \cong G L_{d}(k)$.

Definition 2.6. A subspace $W \subset V$ is invariant if:

$$
W \subseteq V \text { s.t. } \forall g \in G, \varphi(g)(w) \in W, \forall w \in W \text {. }
$$

In character 0 , we can decompose V into invariant subspaces

$$
\begin{gathered}
V=W \oplus W^{\prime} \\
\Rightarrow \varphi(g)=\varphi_{W}(g) \oplus \varphi_{W}^{\prime}(g) .
\end{gathered}
$$

Theorem 2.7. - Every representation decomposes into irreducible representations, i.e. there is no $W \subset V \neq 0$ or V invariant under the group action.

- There are finitely many irreducible representations (up to isomorphism) in bijection with the conjugacy classes of G.

For S_{n}, the conjugacy classes are in bijection with $\lambda \vdash n$ (partitions of n).
Representation of "Tower" of S_{n}, i.e. $\bigoplus_{n \geq 0} S_{n}$.
\{Irreducible Representations of $\left.\bigoplus S_{n}\right\} \longleftrightarrow \lambda \vdash n \geq 0$.
$\Rightarrow k\left(\bigoplus_{n \geq 0} S_{n}\right)=k\{$ Irr. Reps $\} \cong$ Sym, as a graded vector space.
Operations on $k\left(\bigoplus_{n \geq 0} S_{n}\right)$: Let V be any representation of S_{n}.

$$
V=\sum c_{\lambda} X^{\lambda}
$$

where X^{λ} is the basis of the irreducible representations, and $c_{\lambda} \in \mathbb{Z}_{\geq 0}$.
Let V be a representation of S_{n} and W be a representation of S_{m}; then, $V * W$ is a representation of S_{n+m}.

Let H be a subgroup of G, and V a representation of H. Then,

$$
\begin{gathered}
I n d_{H}^{G} V=" V \otimes_{H} k G " . \\
V * W=\operatorname{In} d_{S_{n} \times S_{m}}^{S_{m+n}} V \otimes W .
\end{gathered}
$$

Again, supposing H is a subgroup of G with W a representation of G. Then

$$
\operatorname{Res}_{H}^{G} W=\left.W\right|_{H} .
$$

If V is a representation of S_{n}, then

$$
\Delta(V)=\sum_{l=0}^{n} \operatorname{Re}_{S_{l} \times S_{n-l}}^{S_{n}} V=\sum V^{(1)} \otimes V^{(2)}
$$

The Mackey Formula gives us a relation that corresponds to:

$$
\Delta(V * W)=\Delta(V) * \Delta(W)
$$

So $K\left(\oplus_{n \geq 0} S_{n}\right)$ is a Hopf Algebra. Specifically,

$$
K\left(\bigoplus_{n \geq 0} S_{n}\right) \xrightarrow{\sim} \text { Sym. }
$$

with the special basis:

$$
X^{\lambda} \longrightarrow s_{\lambda}, \quad \text { the Schur function. }
$$

3. Thursday, June 21, 2012
3.1. Duality. Given a graded Hopf algebra $H=\bigoplus_{n \geq 0} H_{n}$, we have a graded dual $H^{*}=\bigoplus_{n \geq 0} H_{n}^{*}$ where $H_{n}^{*}=\operatorname{Hom}_{k}\left(H_{n}, k\right)$.

This duality is explained in the diagram in Figure 3.1.

$$
\Phi^{*}: W^{*} \longrightarrow V^{*}
$$

Figure 7. Duality of Algebras.
H^{*} is also a Hopf algebra, provided that the H_{n} are finite-dimensional.
(1) For multiplication on H^{*}, we can use Δ on H :

$$
f * g=m_{k}(g \otimes f) \circ \Delta_{H},
$$

satisfying the diagram in Figure 8.

Figure 8. Multiplication on the Dual.
(2) For comultiplication $H^{*} \longrightarrow H^{*} \otimes H^{*}$, we use m_{H}.

$$
\Delta(f)=\varphi^{-1} \circ m_{H}^{*}(f) .
$$

See Figure 9 for a description.

Figure 9. Comultiplication on the Dual.
(3) The unit is obtained from the unit $u: k \longrightarrow H$:

$$
\Rightarrow H^{*} \xrightarrow{u^{*}} k^{*} \xrightarrow{\sim} k .
$$

(4) Similarly, the counit is obtained from the counit $\epsilon: H \rightarrow k$:

$$
\Rightarrow k \xrightarrow[\rightarrow]{\sim} k^{*} \xrightarrow{\epsilon^{*}} H^{*} .
$$

Given that the dual to the Hopf algebra is a Hopf algebra, what is Sym*?
We have several bases of Sym: $\left\{e_{\lambda}\right\},\left\{h_{\lambda}\right\},\left\{m_{\lambda}\right\},\left\{s_{\lambda}\right\}$.
Let us consider $h_{\lambda}^{*}: S y m \rightarrow k$, which maps

$$
h_{\mu} \mapsto \begin{cases}1, & \mu=\lambda \\ 0, & \text { otherwise }\end{cases}
$$

An alternative definition looks at the inner product that gives $\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda \mu}$. Then,

$$
h_{\lambda}:=\left\langle---, m_{\lambda}\right\rangle .
$$

When we dualize e_{λ}, we get an ugly basis f_{λ}, so we ignore it. On the other hand, h_{λ} and m_{λ} dualize to each other, and s_{λ} dualizes to itself. This condition is so special in Hopf algebras that it uniquely characterizes tensor powers of Sym (Zelevinsky).
3.2. NSym. Let us describe a new Hopf algebra.

Definition 3.1. Let NSym $=k\left\langle H_{1}, H_{2}, \ldots\right\rangle$ be the free associative algebra on the variables H_{i}, where the degree of $H_{i}=i$.

Monomials are words in the H_{i} 's:

$$
\begin{gathered}
H_{\alpha}=H_{\alpha_{1}} H_{\alpha_{2}} \cdots H_{\alpha_{l}} . \\
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right), \alpha_{i}>0, \alpha_{1}+\alpha_{2}+\cdots+\alpha_{l}=m=|\alpha| \Rightarrow \alpha \models m .
\end{gathered}
$$

A basis of NSym is $\left\{H_{\alpha}\right\}_{\alpha \models m \geq 0}$. This is a bialgebra with comultiplication:

$$
\Delta\left(H_{m}\right)=\sum_{i=0}^{m} H_{i} \otimes H_{m-i} .
$$

Therefore, N Sym is Hopf, with $S\left(H_{i}\right)=(-1)^{i} E_{i}$.
Now we consider the dual of NSym, i.e. $N s y m^{*}$. In NSym the multiplication is non-commutative, while the comultiplication is cocommutative; therefore, in the dual NSym *, the multiplication will be commutative, while the comultiplication will be non-cocommutative.

$$
\begin{gathered}
\text { NSym }^{*} \xrightarrow{\sim} \text { QSym } . \\
H_{\alpha}^{*} \mapsto M_{\alpha} .
\end{gathered}
$$

QSym is the ring of Quasi-symmetric functions (given by a realization):

$$
\begin{aligned}
Q S y m & \subseteq k\left[\left[x_{1}, x_{2}, \ldots\right]\right] . \\
M_{\alpha}\left(x_{1}, x_{2}, \ldots\right) & :=\sum_{i_{1}<i_{2}<\cdots<i_{l}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{l}}^{\alpha_{l}} .
\end{aligned}
$$

Remark 3.2. The action of S_{n} on $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$:

$$
\begin{aligned}
& s_{i} * x^{\alpha}= \begin{cases}x^{\alpha}, & \alpha_{i} \neq 0 \text { and } \alpha_{i} \neq 0 \\
s_{i}\left(x^{\alpha}\right), & \text { otherwise. }\end{cases} \\
& \Rightarrow \sigma *(f g) \neq(\sigma * f)(\sigma * g) .
\end{aligned}
$$

You can check that $M_{\alpha}=\sum x^{\beta}$, where β runs over the orbit of the polynomial $x^{a} l p h a$ under the (*).

$$
\Rightarrow \operatorname{QSym}_{(n)}=k\left[x_{1}, x_{2}, \ldots\right]^{S_{n}(*)}, \quad Q \operatorname{Sym}=\lim _{\leftarrow} \operatorname{QSym}_{(n)} .
$$

In QSym,

$$
M_{\alpha} M_{\beta}=\sum_{\gamma \in \alpha \widetilde{\amalg} \beta} M_{\gamma} .
$$

This \widetilde{W} is a quasi-shuffle, where you can intermix the two words, or superimpose letters from the two words.

Example 3.3. The normal shuffle Ш:

$$
(1) \amalg(2,1)=121+211+211 .
$$

The quasi-shuffle $\widetilde{\amalg}$

$$
\text { (1) } \widetilde{\amalg}(2,1)=121+211+211+31+22 .
$$

For our comultiplication, we take $\Delta\left(M_{\alpha}\right)=\sum_{\alpha=\beta \cdot \gamma} M_{\beta} \otimes M_{\gamma}$.
Working with

$$
Q \operatorname{Sym} \subseteq k\left[\left[x_{1}, x_{2}, \ldots\right]\right], \quad \operatorname{QSym}_{(n)} \subseteq k\left[x_{1}, \ldots, x_{n}\right],
$$

we may look at

$$
\operatorname{dim}\left(k\left[x_{1}, \ldots, x_{n}\right] /\left\langle Q S y m_{(n)}^{+}\right)=\operatorname{dim}\left(T L_{n}\right),\right.
$$

a very surprising fact, where $T L_{n}=$ Temperley-Leib Algebra $\cong k S_{n} /($ ker action of $*)$.

Question 3.4. Given an algebra A_{n} obtained by generators acting faithfully on $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, define

$$
k\left[x_{1}, \ldots, x_{n}\right]^{A_{n}}=\left\{p \in k\left[x_{1}, \ldots, x_{n}\right]: g_{i} P=P \forall g_{i} \text { generator }\right\} .
$$

When do we have

$$
\operatorname{dim}\left(k\left[x_{1}, \ldots, x_{n}\right] /\left\langle k\left[x_{1}, \ldots, x_{n}\right]^{A_{n}^{+}}\right\rangle\right)=\operatorname{dim} A_{n} ?
$$

Type C Hopf Algebra:

$$
\begin{aligned}
& \text { NSym } \cong K\left(\bigoplus_{n \geq 0} H_{n}(o)\right) \quad\left(\text { Projective representation of } H_{n}(o)\right) . \\
& Q S y m \cong G\left(\bigoplus_{n \geq 0} H_{n}(o)\right) \quad\left(\text { Finitely generated module of } H_{n}(o)\right) .
\end{aligned}
$$

3.3. NCSym. We now describe another Combinatorial Hopf Algebra.

NCSym $\subseteq k\left\langle\left\langle x_{1}, x_{2}, \ldots\right\rangle\right\rangle$, the non-commutative k-algebra of series. Specifically,

$$
\text { NCSym }=\lim _{\leftarrow} k\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle^{S_{n}} .
$$

NCSym has the basis $M_{A}=\sum w$, where w is in the orbit of a word $w(A)$. We write $w=$ $x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}$.
w is also a function: $[1,2, \ldots, m] \rightarrow\{1,2, \ldots\}$.

$$
\nabla(w)=\left\{w^{-1}(i): i \in\{1,2, \ldots\}\right\} \backslash \emptyset .
$$

This is a set partition of $\{1,2, \ldots, m\}$; therefore, orbits are in 1-to- 1 correspondence with $A \vdash$ $\{1,2, \ldots, m\}, m \geq 0$. (Note: these are set partitions of the set of integers).

A basis of NCSym is given by

$$
\left\{M_{A}\right\}_{A \vdash[m], m \geq 0} .
$$

Question 3.5. What is the dimension of

$$
k\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle /\left\langle\text { NCSym }^{+}\right\rangle ?
$$

Now, we examine a Hopf Algebra defined by its character. See Figure 10 for a description.

Figure 10. QSym, defined by Character.

4. Friday, June 22, 2012

A graded Hopf algebra can also be thought of as a set of vector spaces spanned by constructing combinatorial objects, i.e.

$$
H=\bigoplus_{n \geq 0} H_{n}=\bigoplus_{n \geq 0} H[n] .
$$

Then, we can define an exponential generating function:

$$
H(z)=\sum_{n \geq 0} \operatorname{dim} H[n] \frac{z^{n}}{n!} .
$$

(1) Multiplication: $H[n] \otimes H[m] \rightarrow H[n+m]$, sending $a \otimes b \mapsto a * b \uparrow^{n}$, where \uparrow^{n} sends a combinatorial object on $\{1, \ldots, m\}$ to an object on $\{n+1, \ldots, n+m\}$.
(2) Comultiplication: $\Delta: H[n] \rightarrow \bigoplus_{k+l} H[k] \otimes H[\ell]$, sending $a \mapsto \sum_{S \subseteq\{1, \ldots, n\}} s t\left(\left.a\right|_{S}\right) \otimes s t\left(\left.b\right|_{S}\right)$.

Here $s t$ is a function sending a set S to the set of integers from 1 to $|S|$.
(3) Antipode: $S(h)=-\sum_{h_{(1)} \neq 1} h_{(1)} S\left(h_{(2)}\right)=\sum_{h_{(1)}, h_{(2)}}(-1)^{\square} h_{(1)} h_{(2)}$.

Definition 4.1. Given a finite set S, a species gives a graded vector space of structures. For example,
$S \longrightarrow H[S]$, a finite-dimensional vector space of a certain construction on S.
$S \longrightarrow G[S]$, the space of graphs on S.
Not only do we know how to construct $H[S]$, but we have a natural transformation that takes

$$
[\varphi: S \xrightarrow{\sim} T] \longrightarrow[H[\varphi]: H[S] \xrightarrow{\sim} H[T] .
$$

In other words, a species is a functor from FiniteSets to VectorSpaces.
Example 4.2. (1) E, the "Exp" species, given by $E[S]=k\{S\}$.
(2) Π, "Set Partitions", is given by $\Pi[S]=$ the span of set partitions on S. For example,

$$
\{a, b, c\} \longrightarrow \Pi[\{a, b, c\}] \text { with basis }\{\{a, b, c\}\},\{\{a\},\{b, c\}\}, \ldots,\{\{a\},\{b\},\{c\}\} .
$$

4.1. Hopf Monoids. Consider graded vector spaces:

$$
H=\bigoplus_{n \geq 0} H_{n}, T=\bigoplus_{n \geq 0} T_{n}
$$

We have the tensor product:

$$
H \otimes T=\bigoplus_{d \geq 0}\left(\bigoplus_{n+m=d} H_{n} \otimes H_{m}\right)
$$

Multiplication: $m: H \otimes H \rightarrow H$.
Graded Multiplication: $m_{n, m}: H_{n} \otimes H_{m} \rightarrow H_{n+m}$.
We similarly define the tensor product of species:
Definition 4.3. Let A and B be two species. Then, we write $A \bullet B$ is the species such that

$$
A \bullet B[S]=\bigoplus_{I+J=S} A[I] \otimes B[J] .
$$

where " + " is the disjoint union.
Definition 4.4. We define the multiplication map $m: H \bullet H \rightarrow H$, by taking for all $I+J=S$,

$$
m_{I, J}: H[I] \otimes H[J] \longrightarrow H[S], \text { with } a \otimes b \mapsto a * b .
$$

Definition 4.5. We define the Hopf Monoid:

$$
(H, m, u, \Delta, \varepsilon, S)
$$

where H is a species, m is a multiplication map from $H \bullet H \rightarrow H$ (satisfying figure 11), u is the unit mapping $\mathbf{1} \rightarrow H$, where:

$$
\mathbf{1}[S]= \begin{cases}k & S=\emptyset \\ 0 & \text { otherwise } .\end{cases}
$$

The comultiplication $\Delta: H \rightarrow H \bullet H$ is defined by

$$
\begin{gathered}
\Delta_{S}=\sum_{I+J=S} \Delta_{I, J}, \text { where. } \\
\Delta_{I, J}: H[S] \rightarrow H[I] \otimes H[J], \text { sending }\left.\left.a \mapsto a\right|_{I} \otimes a\right|_{J}
\end{gathered}
$$

m and u are associative and unital. Δ and ε are coassociative and counital. Compatibility of Δ on m is given by the diagram in Figure 12.

Figure 11. Associativity of the Monoid.

Figure 12. Compatibility of Δ and m.

Example 4.6. Consider the species of linear orderings $L[S]$. For any $I+J=S$,

$$
m_{I, J}: H[I] \otimes H[J] \rightarrow H[I+J],
$$

sending $a \otimes b \mapsto a \bullet b$, the concatenation product. For instance, if $I=\{2,4,5,7\}$ and $J=\{1,3,6\}$, with order $a=5274$ and $b=136$, then $a \bullet b=5274136$.

$$
\Delta_{I, J}: H[S] \rightarrow H[I] \otimes H[J],
$$

sending a to its restrictions $\left.\left.a\right|_{I} \otimes a\right|_{J}$.For instance, if $I=\{1,5\}$ and $J=\{2,3,4\}$, with order $a=43125$, then $\Delta_{I, J}(a)=15 \otimes 432$.

Furthermore, the species respects all diagrams, so L is a Hopf Monoid.

and for all $I+J=S$,

$$
\begin{aligned}
& H[I] \otimes H[J] \xrightarrow{I d \otimes S} H[I] \otimes H[J] \\
& \begin{array}{cc}
\Delta_{I, J} \uparrow \\
H[S] \xrightarrow[u \circ \varepsilon]{ }{ }^{m_{I J}} \downarrow \\
H[S]
\end{array}
\end{aligned}
$$

$$
\text { where } u \circ \varepsilon= \begin{cases}0 & S \neq \varnothing \\ 1 & S=\varnothing\end{cases}
$$

Figure 13. The Antipode S.
The graded antipode requirement is found in Figure 13. The antipode map is defined for each set S.

Take $a \in H[S]$ such that $S \neq \emptyset$. We have a recursive formula:

$$
\begin{gathered}
\mathcal{S}(a)=-\left.\sum_{I+J=S} a\right|_{I} \mathcal{S}\left(\left.a\right|_{J}\right) . \\
\mathcal{S}: H \rightarrow H, \text { and } \mathcal{S}_{S}: H[S] \rightarrow H[S] .
\end{gathered}
$$

$a \in H[\emptyset]=k$ and $S_{\emptyset}(1)=1$.

$$
\begin{gathered}
H \xrightarrow{K} \bigoplus_{n \geq 0} H[n] . \\
H \xrightarrow{\bar{K}} \bigoplus_{n \geq 0} H[n]_{S_{n}} .
\end{gathered}
$$

This latter species is associated to the unlabeled case - since structures are invariant under label-shuffles:

$$
H[n]_{S_{n}}=H[n] /\langle x-H[\sigma](x): \forall x \in H[n], \forall \sigma:[n] \xrightarrow{\sim}[n]\rangle .
$$

Passing to Generating Functions:

$$
\begin{aligned}
& \bigoplus_{n \geq 0} H[n] \longrightarrow H(z)=\sum_{n \geq 0} \operatorname{dim}(H[n]) \frac{z^{n}}{n!} . \\
& \bigoplus_{n \geq 0} H[n]_{S_{n}} \longrightarrow H(z)=\sum_{n \geq 0} \operatorname{dim}\left(H[n]_{S_{n}}\right) z^{n} .
\end{aligned}
$$

The Hopf Algebras that we discussed can be related to species: for example, $Q S y m$ can be obtained via $\mathcal{L} \circ \mathcal{E}^{+}$.

