OPEN PROBLEM SESSION
 ECCO 2012

(1). (Federico Ardila) For a composition $c=\left(c_{1}, \ldots, c_{k}\right)$ we are interested in the composition polynomial $g_{c}(q)$, which can be given at least three definitions.
(a.) If we write $\mathbf{t}^{\mathbf{c - 1}}:=t_{1}^{c_{1}-1} \cdots t_{k}^{c_{k}-1}$, where $t=\left(t_{1}, \ldots, t_{k}\right)$, then

$$
g_{c}(q):=\int_{q}^{1} \int_{q}^{t_{k}} \cdots \int_{q}^{t_{2}} \mathbf{t}^{\mathbf{c}-\mathbf{1}} d t_{1} \cdots d t_{k} .
$$

(b.) Let $\beta_{i}=c_{1}+\cdots+c_{i}$ for $i=0, \ldots, k$. Let $h(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k}$ be the polynomial of smallest degree that passes through the $k+1$ points $\left(\beta_{i}, q^{\beta_{i}}\right)$ on the curve $y=q^{x}$. Here the coefficients a_{i} are functions of q. Then $a_{k}=(-1)^{k} g_{c}(q)$.
(c.) It is the volume of a combinatorially defined polytope, as explained in [1].

Some examples are:

$$
\begin{aligned}
& -g_{(1,1,1,1)}(q)=\frac{1}{24}(1-q)^{4} . \\
& -g_{(2,2,2,2)}(q)=\frac{1}{384}(1-q)^{4}(1+q)^{4} . \\
& -g_{(1,2,2)}(q)=\frac{1}{120}(1-q)^{3}\left(8+9 q+3 q^{2}\right) . \\
& -g_{(2,2,1)}(q)=\frac{1}{120}(1-q)^{3}\left(3+9 q+8 q^{2}\right) . \\
& -g_{(5,3)}(q)=\frac{1}{120}(1-q)^{2}\left(5+10 q+15 q^{2}+12 q^{3}+9 q^{4}+6 q^{5}+3 q^{6}\right) .
\end{aligned}
$$

and it is a fact that

$$
g_{c}(q)=(1-q)^{k} f_{c}(q)
$$

where $f_{c}(q)$ is a polynomial with positive coefficients. [1, Theorem 6.5] Questions:
(I) These polynomials originally arose as volumes of polytopes; why do they also appear in the polynomial interpolation of exponential functions?
(II) Are the coefficients of $f_{c}(q)$ unimodal? Are they log-concave?
(III) After suitable rescaling, do the coefficients of $f_{c}(q)$ count nice combinatorial objects?
(2). (Criel Merino) Let

$$
M_{r, d}:=\left\{\text { monomials over } z_{1}, z_{2}, \ldots, z_{d} \text { of degree } \leq r\right\}
$$

A set of monomials $C_{r, d}$ of degree r over the variables $z_{1}, z_{2}, \ldots, z_{d}$ is a covering set for $M_{r-1, d}$ if any monomial in $M_{r-1, d}$ is a divisor for some monomial in $C_{r, d}$. Now let

$$
f_{r, d}:=\min \text { size of a covering set for } M_{r-1, d} .
$$

Conjecture:

(I) $f_{r, d}=\#$ (aperiodic necklaces with r black beads and $d-r$ white beads).
(II) $f_{r, d}=f_{d, r}$ [Remark that this is a consequence of the previous conjecture].
(3). (Bernd Sturmfels) Let \mathcal{F} be a family of non-trivial subsets of $[n]$. The collection \mathcal{F} defines a family C of affine hyperplane arrangements in \mathbb{R}^{n-1} as follows:

$$
C=\left\{\sum_{i \in F} x_{i}=0\right\}_{F \in \mathcal{F}}
$$

Question: How many bounded regions does this family have? This may be intractable in general, but an answer for particular families \mathcal{F} would be interesting.

Now, let P be a poset on $[n]$ and put

$$
\mathcal{L}[P]=\{\text { linear extensions of } P\} .
$$

Question: Determine the kernel of the map

$$
\phi: \mathbb{R}\left[p_{\pi} \mid \pi \in \mathcal{L}[P]\right] \rightarrow \mathbb{R}\left(x_{1}, \ldots, x_{n}\right)
$$

where p_{π} is the probability of observing the permutation π in $\mathcal{L}[P]$ and

$$
\phi\left(p_{\pi}\right)=\prod_{i+1}^{n} \frac{1}{x_{\pi(1)}+\cdots+x_{\pi(i)}}
$$

(4). (Nantel Bergeron) The space NCSym is a subspace of $k\left\langle\left\langle x_{1}, x_{2}, \ldots\right\rangle\right\rangle$. For n fixed the following questions are open:
(I) Is $\left\langle N C \operatorname{Sym}_{(n)}^{+}\right\rangle$finitely generated?
(II) Is the dimension of the vector space $k\left\langle x_{1}, \ldots, x_{n}\right\rangle /\left\langle N C S y m_{(n)}^{+}\right\rangle$finite?
(III) What would be the representation theory of S_{n} on this quotient?
(IV) Same questions are unsolved for the space NCQSym.
(5). (Mauricio Velasco) Let

$$
\mathcal{H}_{d}^{n}=\left\{I \subseteq R=k\left[x_{1}, \ldots, x_{n}\right] \mid \operatorname{dim}_{k}(R / I)=d\right\}
$$

This is the Hilbert scheme on d points in affine n-space. Now let

$$
\varphi(d, n):=\sup _{I} \operatorname{dim}_{k}(\operatorname{Hom}(I, R / I))
$$

Question: What is $\varphi(3, n)$?
(6.) (Alejandro Morales) We denote by \mathfrak{S}_{n} the group of permutations on $[n]=\{1,2, \ldots, n\}$. We write permutations as words $w=w_{1} w_{2} \cdots w_{n}$ where w_{i} is the image of w at i. We also identify each permutation w with its permutation matrix, the $n \times n 0-1$ matrix with ones in positions $\left(i, w_{i}\right)$. We think of the 1 s in a permutation matrix as n non-attacking rooks on $[n] \times[n]$. Given a subset B of $[n] \times[n]$ we look at rook placements C of n non-attacking rooks on B.

Recall the notion of the strong Bruhat order \prec on the symmetric group [2], Ch. 2]: if $t_{i j}$ is the transposition that switches i and j, we have as our basic relations that $u \prec u \cdot t_{i j}$ in the strong Bruhat order when $\operatorname{inv}(u)+1=\operatorname{inv}\left(u \cdot t_{i j}\right)$, and we extend by transitivity. Let $\left[w, w_{0}\right]$ denote the interval $\{u \mid u \succ w\}$ in the strong Bruhat order where w_{0} is the largest element $n n-1 \ldots 21$ of this order.

$$
\left[\begin{array}{ccccc}
0 & 0 & R_{35142} \\
0 & 0 & \frac{a_{13}}{a_{23}} & a_{14} & a_{15} \\
\frac{a_{31}}{a_{31}} & a_{32} & a_{33} & \frac{a_{25}}{a_{34}} & a_{35} \\
a_{51} & 0 & a_{43} & a_{44}(35142) \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}\right]\left[\begin{array}{ccccc}
0 & 0 & \frac{a_{13}}{a_{23}} & a_{14} & a_{15} \\
0 & 0 & a_{24} & \frac{a_{25}}{0} \\
\frac{a_{31}}{a_{32}} & a_{32} & a_{33} & a_{34} & 0 \\
a_{51} & a_{52} & a_{43} & \frac{a_{44}}{0} & 0
\end{array}\right]
$$

Figure 1. Matrices indicating the (i) Rothe diagram and (ii) left hull of $w=35142$. The matrix entries $a_{i w_{i}}$ are in red.

Example 1. If $w=3412$, then the permutations in \mathfrak{S}_{4} that succeed w in the Bruhat order are $\{3412,3421,4312,4321\}$.

In [4, Sjöstrand gave necessary and sufficient conditions for $\left[w, w_{0}\right]$ to be equal to the set of rook placements of a skew shape associated to w. Namely, the left hull $H_{L}(w)$ of w is the smallest skew shape that covers w. Equivalently, $H_{L}(w)$ is the union over non-inversions (i, j) of w of the rectangles $\left\{(k, \ell) \mid w_{i} \leq k \leq w_{j}, i \leq\right.$ $\ell \leq j\}$. See Figure 1 for an example of the left hull of a permutation.
Theorem 2 ([4, Cor. 3.3]). The Bruhat interval $\left[w, w_{0}\right]$ in \mathfrak{S}_{n} equals the set of rook placements in the left hull $H_{L}(w)$ of w if and only if w avoids the patterns 1324, 24153, 31524, and 426153.

A natural family of diagrams is the collection of Rothe diagrams of permutations, which appear in the study of Schubert calculus. The Rothe diagram R_{w} of a permutation w is a subset of $\{1,2, \ldots, n\} \times\{1,2, \ldots, n\}$ whose cardinality is equal to the number of inversions of w; it is given by

$$
R_{w}=\left\{(i, j) \mid 1 \leq i, j \leq n, w(i)>j, w^{-1}(j)>i\right\} .
$$

See Figure 1 for some examples of Rothe diagrams. The following is a special case of two conjectures in [3, Sec. 6.].
Conjecture 3 ([3]). Fix a permutation w in \mathfrak{S}_{n}. We have that the number of rook placements in the left hull $H_{L}(w)$ equals the number of rook placements in the Rothe diagram R_{w} if and only if w avoids the patterns 1324, 24153, 31524, and 426153.

References

[1] F. Ardila and J. Doker. Lifted generalized permutahedra and composition polynomials.
[2] A. Björner and F. Brenti. Combinatorics of Coxeter groups. Graduate Texts in Mathematics, Springer, 2005.
[3] A.J. Klein, J.B. Lewis, and A.H. Morales. Counting matrices over finite fields with support on skew young diagrams and complements of rothe diagrams. arXiv:1203.5804, 2012.
[4] J. Sjöstrand. Bruhat intervals are rooks on skew Ferrers boards. J. Combin. Theory, Ser. A, 114(7):1182-1198, 2007.

